Background: Oocytes are susceptible to alterations in the various fatty acid contents of follicular fluid (FF), which may influence maturation and embryogenesis. Different fatty acids exert various effects on intracytoplasmic sperm injection (ICSI), which needs further studies to uncover the involved mechanisms. Objectives: To assess FF fatty acids in women undergoing ICSI and to correlate them with ICSI parameters, namely the total count of aspirated oocytes, oocyte maturation rate, fertilization rate and percentage of good-quality embryos. Methods: Fifty women undergoing ICSI were enrolled in this cross-sectional study. FF samples were collected during oocyte retrieval and were analyzed for fatty acids using gas chromatography. Fatty acids were calculated as percentages of the total fatty acids. Results: The most common fatty acids found in the FF of women who underwent ICSI were palmitic acid, stearic acid, and oleic acid, with median (interquartile range) of 58.61%(21.66%), 26.27%(14.31%), and 20.13%(31.05%), respectively. Palmitic acid correlated inversely and significantly with oocyte maturation rate, fertilization rate, and percentage of good-quality embryos, with p=0.003, 0.037, and 0.028, respectively. Stearic acid correlated negatively and significantly with oocyte maturation rate (p=0.037) and fertilization rate (p=0.041). Furthermore, an inversely significant correlation was noticed between propionic acid and the percentage of good-quality embryos, as indicated by p=0.014. Conclusions: Palmitic, stearic, and propionic acids in the FF might influence ICSI parameters; thus, they might be used as markers of oocyte developmental competence. Nevertheless, further research is warranted.
The melting duration in the photovoltaic/phase-change material (PV/PCM) system is a crucial parameter for thermal energy management such that its improvement can realize better energy management in respect to thermal storage capabilities, thermal conditions, and the lifespan of PV modules. An innovative and efficient technique for improving the melting duration is the inclusion of an exterior metal foam layer in the PV/PCM system. For detailed investigations of utilizing different metal foam configurations in terms of their convective heat transfer coefficients, the present paper proposes a newly developed mathematical model for the PV/PCM–metal foam assembly that can readily be implemented with a wide range of operating condition
... Show MoreThe new compounds of pyrazolines were synthesized from the reaction of different acid hydrazide with ethylacetoacetate and ethanol under reflux. These compounds were obtained from many sequence reactions. The 4-acetyl-5-methyl-2,4-dihydro-3H-pyrazol-3-one compounds synthesized from the reaction of 5-methyl-2,4-dihydro-3H-pyrazol-3-one with acetyl chloride in calcium hydroxide and 1,4-dioxane. Finaly, Schiff bases were prepared via condensation reaction of products of mono- and tri ketone derivatives[IV]a, b with phenyl hydrazines as presented in (Scheme 1, 2). The synthesized compounds were identification by using FTIR, NMR and Mass spectroscopy (of some of them).
The soap content in biodiesel is an important challenge during the production and purification processing of biodiesel. Natural deep eutectic solvents (NADES) have recently attracted considerable interest as an environmentally suitable substitute for traditional solvents in the biodiesel industry. This work investigates the soap removal from the contaminated biodiesel using NADES. Eight choline chloride‐based deep eutectic solvents (DESs) were screened using the conductor‐like screening model for real solvents (COSMO‐RS) to identify the most suitable solvent for soap removal and were validated experimentally. The effect of NADES molar ratio, NADES:biodiesel ratio, mixing speed and extraction ti
This study presents, for the first time, an innovative Jet Plasma-assisted technique for the green synthesis of TiO₂@Ag core–shell nanoparticles using chard leaf extract as a natural reducing and stabilizing agent. The Jet Plasma provides a highly energetic environment that accelerates nucleation and core–shell formation at low temperatures without toxic precursors. The synthesized nanoparticles exhibited uniform and stable structures, as confirmed by comprehensive characterization techniques including X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), ultraviolet–visible (UV–Vis) spectroscopy, transmission electron microscopy (TEM), and zeta potential analysis. XRD patterns confirmed the crystalline anatase
... Show MoreWheat straw was modified with malonic acid in order to get low cost adsorbent have a good ability to remove copper and ferric ions from aqueous solutions, chemical modification temperature was 120°C and the time was 12 h. Parameters that affect the adsorption experiments were studied and found the optimum pH were 6 and 5 for copper and iron respectively and the time interval was 120 min and the adsorbent mass was 0.1 g. The values for adsorption isotherms parameters were determined according to Langmuir [qmax were 54.64 and 61.7 mg/g while b values were 0.234 and 0.22 mg/l] , Freundlich [Kf were 16.07 and 18.89 mg/g and n were 2.77 and 3.16], Temkin [B were 0.063 and 0.074 j/mol and At were 0.143 and 1.658 l/g] and for Dubinin-Radushkev
... Show MoreIn this paper, a procedure to establish the different performance measures in terms of crisp value is proposed for two classes of arrivals and multiple channel queueing models, where both arrival and service rate are fuzzy numbers. The main idea is to convert the arrival rates and service rates under fuzzy queues into crisp queues by using graded mean integration approach, which can be represented as median rule number. Hence, we apply the crisp values obtained to establish the performance measure of conventional multiple queueing models. This procedure has shown its effectiveness when incorporated with many types of membership functions in solving queuing problems. Two numerical illustrations are presented to determine the validity of the
... Show More