Preferred Language
Articles
/
SBe0L48BVTCNdQwCGV7T
Image Compression based on Non-Linear Polynomial Prediction Model
...Show More Authors

Publication Date
Wed Jul 25 2018
Journal Name
International Journal Of Engineering Trends And Technology
Fixed Predictor Polynomial Coding for Image Compression
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Sat Feb 01 2020
Journal Name
International Journal Of Computer Science And Mobile Computing
Hierarchical Fixed Prediction of Mixed based for Medical Image Compression.
...Show More Authors

Publication Date
Wed Jun 01 2022
Journal Name
V. International Scientific Congress Of Pure, Applied And Technological Sciences
Lightweight Image Compression Using Polynomial and Transform Coding
...Show More Authors

Publication Date
Wed Jul 06 2022
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Image Compression using Polynomial Coding Techniques: A review
...Show More Authors

Publication Date
Sat Jun 01 2019
Journal Name
International Journal Of Computer Science And Mobile Computing
Hierarchal Polynomial Coding of Grayscale Lossless Image Compression
...Show More Authors

Publication Date
Fri May 17 2013
Journal Name
International Journal Of Computer Applications
Fast Lossless Compression of Medical Images based on Polynomial
...Show More Authors

In this paper, a fast lossless image compression method is introduced for compressing medical images, it is based on splitting the image blocks according to its nature along with using the polynomial approximation to decompose image signal followed by applying run length coding on the residue part of the image, which represents the error caused by applying polynomial approximation. Then, Huffman coding is applied as a last stage to encode the polynomial coefficients and run length coding. The test results indicate that the suggested method can lead to promising performance.

View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sat Nov 05 2016
Journal Name
Research Journal Of Applied Sciences, Engineering And Technology
Image Compression Based on Cubic Bezier Interpolation, Wavelet Transform, Polynomial Approximation, Quadtree Coding and High Order Shift Encoding
...Show More Authors

In this study, an efficient compression system is introduced, it is based on using wavelet transform and two types of 3Dimension (3D) surface representations (i.e., Cubic Bezier Interpolation (CBI)) and 1 st order polynomial approximation. Each one is applied on different scales of the image; CBI is applied on the wide area of the image in order to prune the image components that show large scale variation, while the 1 st order polynomial is applied on the small area of residue component (i.e., after subtracting the cubic Bezier from the image) in order to prune the local smoothing components and getting better compression gain. Then, the produced cubic Bezier surface is subtracted from the image signal to get the residue component. Then, t

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Mon Jul 01 2019
Journal Name
International Journal Of Computer Science And Mobile Computing
Color Image Compression of Inter-Prediction Base
...Show More Authors

Publication Date
Fri Dec 24 2021
Journal Name
Journal Of Engineering Science And Technology. Journal Of Engineering Science And Technology
Grey-Level Image Compression Using 1-D Polynomial and Hybrid Encoding Techniques
...Show More Authors

Scopus (5)
Scopus
Publication Date
Fri Aug 23 2013
Journal Name
International Journal Of Computer Applications
Lossless Compression of Medical Images using Multiresolution Polynomial Approximation Model
...Show More Authors

In this paper, a simple fast lossless image compression method is introduced for compressing medical images, it is based on integrates multiresolution coding along with polynomial approximation of linear based to decompose image signal followed by efficient coding. The test results indicate that the suggested method can lead to promising performance due to flexibility in overcoming the limitations or restrictions of the model order length and extra overhead information required compared to traditional predictive coding techniques.

View Publication
Crossref (4)
Crossref