<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convolutional neural network that uses other activation functions (exponential linear unit (ELU), rectified linear unit (ReLU), Swish, Leaky ReLU, Sigmoid), and the result is that utilizing CWNN gave better results for all performance metrics (accuracy, sensitivity, specificity, precision, and F1-score). The results obtained show that the prediction accuracies of CWNN were 99.97%, 99.9%, 99.97%, and 99.04% when using wavelet filters (rational function with quadratic poles (RASP1), (RASP2), and polynomials windowed (POLYWOG1), superposed logistic function (SLOG1)) as activation function, respectively. Using this algorithm can reduce the time required for the radiologist to detect whether a patient has COVID or not with very high accuracy.</p>
A substantial portion of today’s multimedia data exists in the form of unstructured text. However, the unstructured nature of text poses a significant task in meeting users’ information requirements. Text classification (TC) has been extensively employed in text mining to facilitate multimedia data processing. However, accurately categorizing texts becomes challenging due to the increasing presence of non-informative features within the corpus. Several reviews on TC, encompassing various feature selection (FS) approaches to eliminate non-informative features, have been previously published. However, these reviews do not adequately cover the recently explored approaches to TC problem-solving utilizing FS, such as optimization techniques.
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show MoreOur research comes to shed light on Iraqi literature as literature that arose in special circumstances alongside foreign literature. Using comparative research methods, we chose to highlight two distinguished writers, who have their mark in the world of literature. The first is the Iraqi writer Maysaloun Hadi, who is considered an icon of Iraqi feminist literature, and the second is the French writer Le Clézieu, who won the Nobel in 2008. We will see through the research how the two authors expressed their views of modernity and urbanism. And how each of them separately portrayed the psychological and moral projections that formed the essence of man today.
Résumé
Notre recherche abord un des points inc
... Show MoreIn this research, the removal of cadmium (Cd) from simulated wastewater was investigated by using a fixed bed bio-electrochemical reactor. The effects of the main controlling factors on the performance of the removal process such as applied cell voltage, initial Cd concentration, pH of the catholyte, and the mesh number of the cathode were investigated. The results showed that the applied cell voltage had the main impact on the removal efficiency of cadmium where increasing the applied voltage led to higher removal efficiency. Meanwhile increasing the applied voltage was found to be given lower current efficiency and higher energy consumption. No significant effect of initial Cd concentration on the removal efficiency of cadmium b
... Show MoreThe use of biopolymer material Chitosan impregnated granular activated carbon CHGAC as adsorbent in the removal of lead ions pb.2+ from aqueous solution was studied using batch adsorption mode. The prepared CHGAC was characterized by Scanning Electronic Microscopy (SEM) and atomic-absorption pectrophotometer. The adsorption of lead ions onto Chitosan-impregnated granular activated carbon was examined as a function of adsorbent weight, pH and
contact time in Batch system. Langmuir and Freundlich models were employed to analyze the resulting experimental data demonstrated that better fitted by Langmuir isotherm model than Freundlich model, with good correlation coefficient. The maximum adsorption capacity calculated f
In this research, the removal of cadmium (Cd) from simulated wastewater was investigated by using a fixed bed bio-electrochemical reactor. The effects of the main controlling factors on the performance of the removal process such as applied cell voltage, initial Cd concentration, pH of the catholyte, and the mesh number of the cathode were investigated. The results showed that the applied cell voltage had the main impact on the removal efficiency of cadmium where increasing the applied voltage led to higher removal efficiency. Meanwhile increasing the applied voltage was found to be given lower current efficiency and higher energy consumption. No significant effect of initial Cd concentration on the removal efficie
... Show MoreThis research aims to investigate the color distribution of a huge sample of 613654 galaxies from the Sloan Digital Sky Survey (SDSS). Those galaxies are at a redshift of 0.001 - 0.5 and have magnitudes of g = 17 - 20. Five subsamples of galaxies at redshifts of (0.001 - 0.1), (0.1 - 0.2), (0.2 - 0.3), (0.3 - 0.4) and (0.4 - 0.5) have been extracted from the main sample. The color distributions (u-g), (g-r) and (u-r) have been produced and analysed using a Matlab code for the main sample as well as all five subsamples. Then a bimodal Gaussian fit to color distributions of data that have been carried out using minimum chi-square in Microsoft Office Excel. The results showed that the color distributions of the main sample and
... Show MoreThe ability of Cr (VI) removal from aqueous solution using date palm fibers (leef) was investigated .The effects of pH, contact time, sorbets concentration and initial metal ions concentration on the biosorption were investigated.
The residual concentration of Cr (VI) in solution was determined colorimetrically using spectrophotometer at wave length 540 nm .The biosorption was pH-dependent, the optimum pH was 7 and adsorption isotherms obtained fitted well with Langmuir isotherms .The Langmuir equation obtained was Ce/Cs = 79.99 Ce-77.39, the correlation factor was 0.908.These results indicate that date palm fibers (leef) has a potential effect for the uptake of Cr (VI) from industrial waste water.
Adsorption techniques are widely used to remove certain classes of pollutants from wastewater. Phenolic compounds represent one of the problematic groups. Na-Y zeolite has been synthesized from locally available Iraqi kaolin clay. Characterization of the prepared zeolite was made by XRD and surface area measurement using N2 adsorption. Both synthetic Na-Y zeolite and kaolin clay have been tested for adsorption of 4-Nitro-phenol in batch mode experiments. Maximum removal efficiencies of 90% and 80% were obtained using the prepared zeolite and kaolin clay, respectively. Kinetics and equilibrium adsorption isotherms were investigated. Investigations showed that both Langmuir and Freundlich isotherms fit the experimental data quite well. On the
... Show More