<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convolutional neural network that uses other activation functions (exponential linear unit (ELU), rectified linear unit (ReLU), Swish, Leaky ReLU, Sigmoid), and the result is that utilizing CWNN gave better results for all performance metrics (accuracy, sensitivity, specificity, precision, and F1-score). The results obtained show that the prediction accuracies of CWNN were 99.97%, 99.9%, 99.97%, and 99.04% when using wavelet filters (rational function with quadratic poles (RASP1), (RASP2), and polynomials windowed (POLYWOG1), superposed logistic function (SLOG1)) as activation function, respectively. Using this algorithm can reduce the time required for the radiologist to detect whether a patient has COVID or not with very high accuracy.</p>
Abstract
Objective(s): A descriptive study aimed to determine nurses' knowledge about chest physiotherapy techniques for patients with Corona virus disease and observe the relationship between nurses' knowledge and their socio-demographic characteristics.
Methodology: The study was directed in isolation units of Al- Hussein teaching hospitals in Thi-Qar, Iraq for the period from June 1st, 2022 to November 27th, 2022. Non- probability (purposively) sample comprised 41 nurses. A questionnaire was used for data collection and it consists of two parts: the first part comprises socio demographic features, the second part includes self- administered questionnaire sheet wa
... Show MoreThree-dimensional (3D) reconstruction from images is a most beneficial method of object regeneration by using a photo-realistic way that can be used in many fields. For industrial fields, it can be used to visualize the cracks within alloys or walls. In medical fields, it has been used as 3D scanner to reconstruct some human organs such as internal nose for plastic surgery or to reconstruct ear canal for fabricating a hearing aid device, and others. These applications need high accuracy details and measurement that represent the main issue which should be taken in consideration, also the other issues are cost, movability, and ease of use which should be taken into consideration. This work has presented an approach for design and construc
... Show MoreMalicious software (malware) performs a malicious function that compromising a computer system’s security. Many methods have been developed to improve the security of the computer system resources, among them the use of firewall, encryption, and Intrusion Detection System (IDS). IDS can detect newly unrecognized attack attempt and raising an early alarm to inform the system about this suspicious intrusion attempt. This paper proposed a hybrid IDS for detection intrusion, especially malware, with considering network packet and host features. The hybrid IDS designed using Data Mining (DM) classification methods that for its ability to detect new, previously unseen intrusions accurately and automatically. It uses both anomaly and misuse dete
... Show MoreThe objective of this paper is to improve the general quality of infrared images by proposes an algorithm relying upon strategy for infrared images (IR) enhancement. This algorithm was based on two methods: adaptive histogram equalization (AHE) and Contrast Limited Adaptive Histogram Equalization (CLAHE). The contribution of this paper is on how well contrast enhancement improvement procedures proposed for infrared images, and to propose a strategy that may be most appropriate for consolidation into commercial infrared imaging applications.
The database for this paper consists of night vision infrared images were taken by Zenmuse camera (FLIR Systems, Inc) attached on MATRIC100 drone in Karbala city. The experimental tests showed sign
Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images
Background: Computerized tomography scan can show the detailed anatomy of the nose and paranasal sinuses. The sphenoid sinus is a very important corridor for the skull base because of its central position. This sinus has a great range of variation and can put structures around at risk during surgery. This study aims to examine the variation of the sphenoid sinus, and its relation to other structures around it, in this sample of Iraqi patients. Materials and Methods: CT scans of 122 patients, were obtained, and submitted for examination and measurements, during the period between September 2020 and September 2021. Observation of The sphenoid sinus pneumatization pattern, clival extension, Onodi cell, and lateral pneumatization of SS.
... Show MoreBackground: Dentin removed during root canal system instrumentation for creating adequate geometry for the canal and cleaning the canal. A new instrument had been marketed with the aim of optimum shaping of all parts of the canal system, however, no information present about the amount of dentin removal compared to conventional rotary system. This study investigated the amount of dentin removal when the canal instrumented by SAF compared with ProTaper by using high resolution computed tomography (micro CT). Materials and Methods: Twenty extracted single canalled teeth were utilized for this study; and randomly divided into 2 groups. In the first group, the root canals were prepared by using protaper rotary system till F2 and the root canal
... Show More