<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convolutional neural network that uses other activation functions (exponential linear unit (ELU), rectified linear unit (ReLU), Swish, Leaky ReLU, Sigmoid), and the result is that utilizing CWNN gave better results for all performance metrics (accuracy, sensitivity, specificity, precision, and F1-score). The results obtained show that the prediction accuracies of CWNN were 99.97%, 99.9%, 99.97%, and 99.04% when using wavelet filters (rational function with quadratic poles (RASP1), (RASP2), and polynomials windowed (POLYWOG1), superposed logistic function (SLOG1)) as activation function, respectively. Using this algorithm can reduce the time required for the radiologist to detect whether a patient has COVID or not with very high accuracy.</p>
A study of taxonomic quality of soil algae was conducted with some environmental variables in three sites of local gardens (Kadhimiya, Adhamiya and Dora) within the governorate of Baghdad for the period from October 2016 to March 2017. The study identified 28 species belonging to 16 species in which the predominance of blue green algae (18 species) Followed by Bacillarophyta algae (7 species) and three types of Chlorophyta. The study showed an increase in species of Oscillatoria. The results showed no significant differences between sites in temperature, pH and relative humidity, while there were clear differences between sites for salinity and nutrient The study showed a difference of irrigation water quality and use of different fertilize
... Show MoreAbstract:
The research aims to shed light on the Corona pandemic and its repercussions on the global economy in general, and on the activities of Iraqi economic units in particular. It also aims to show the impact of the auditor’s reporting on the effects of the Corona pandemic on economic units and its reflection on the quality of his reporting. To achieve the objectives of the research, the researcher prepared a questionnaire according to the five-point Likert scale and took into account in its preparation compatibility with the characteristics of the study community, and that the target community for this questionnaire are the economic units listed in the Iraq Stock Exchange that have complet
... Show MoreThe emerge of capitalism beside appearing modern and contemporary political systems which had become hold out it is semi-domination on more vital space of human community life, it is through some vital apparatus, which the free market apparatus had make important one which depend on achieve the privileges of the capitalism elite whom standing on it, especially the finance elite. Thus the achievement of the profit had become the main podcasted of those elite which whom the really advancer of the Globalization system, this is which incarnated by the appears and extend of the (COVID-19) fatality pandemic in the end of last year, whereas reveals widespread of it in more than one states in the world, especially the developed coun
... Show MoreSignificant risks to human health are posed by the 2019 coronavirus illness (COVID-19). SARS coronavirus type 2 receptor, also known as the major enzyme in the renin-angiotensin system (RAS), angiotensin-converting enzyme 2 (ACE-2), connects COVID-19 and RAS. This study was conducted with the intention of determining whether or not RAS gene polymorphisms and ACE-2 (G8790A) play a part in the process of predicting susceptibility to infection with COVID-19. In this study 127 participants, 67 of whom were deemed by a physician to be in a severe state of illness, and 60 of whom were categorized as "healthy controls" .The genetic study included an extraction of genomic DNA from blood samples of each covid 19 patients and healthy control
... Show MoreAbstract
This study aims to identify the repercussions of the Corona pandemic (Covid 19) and its impact on the educational and psychological functions of the Omani family from the point of view of a number of fathers and mothers. Drive for a group of fathers and mothers, some of whom work in the government sector and others are mothers enrolled in graduate studies programs at the university, their ages range between (30-50 years) totally (28) mothers and fathers: 22 mothers and 6 fathers. The results showed that the repercussions of the transformation of e-learning, home quarantine, social distancing, and the challenges associated with them were among the most frequent responses that posed a real challenge to the
... Show MoreIn this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water
... Show MoreThis paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show MoreThis paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show More