Preferred Language
Articles
/
SBbkBIcBVTCNdQwCIS0T
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convolutional neural network that uses other activation functions (exponential linear unit (ELU), rectified linear unit (ReLU), Swish, Leaky ReLU, Sigmoid), and the result is that utilizing CWNN gave better results for all performance metrics (accuracy, sensitivity, specificity, precision, and F1-score). The results obtained show that the prediction accuracies of CWNN were 99.97%, 99.9%, 99.97%, and 99.04% when using wavelet filters (rational function with quadratic poles (RASP1), (RASP2), and polynomials windowed (POLYWOG1), superposed logistic function (SLOG1)) as activation function, respectively. Using this algorithm can reduce the time required for the radiologist to detect whether a patient has COVID or not with very high accuracy.</p>

Crossref
View Publication
Publication Date
Wed Jun 01 2016
Journal Name
Journal Of Economics And Administrative Sciences
Compared with Genetic Algorithm Fast – MCD – Nested Extension and Neural Network Multilayer Back propagation
...Show More Authors

The study using Nonparametric methods for roubust to estimate a location and scatter it is depending  minimum covariance determinant of multivariate regression model , due to the presence of outliear values and increase the sample size and presence of more than after the model regression multivariate therefore be difficult to find a median location .       

It has been the use of genetic algorithm Fast – MCD – Nested Extension and compared with neural Network Back Propagation of multilayer in terms of accuracy of the results and speed in finding median location ,while the best sample to be determined by relying on less distance (Mahalanobis distance)has the stu

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Journal Of Engineering
Automatic Spike Neural Technique for Slicing Bandwidth Estimated Virtual Buffer-Size in Network Environment
...Show More Authors

The Next-generation networks, such as 5G and 6G, need capacity and requirements for low latency, and high dependability. According to experts, one of the most important features of (5 and 6) G networks is network slicing. To enhance the Quality of Service (QoS), network operators may now operate many instances on the same infrastructure due to configuring able slicing QoS. Each virtualized network resource, such as connection bandwidth, buffer size, and computing functions, may have a varied number of virtualized network resources. Because network resources are limited, virtual resources of the slices must be carefully coordinated to meet the different QoS requirements of users and services. These networks may be modifie

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Dec 31 2024
Journal Name
Iraqi Geological Journal
Geomechanical Modeling and Artificial Neural Network Technique for Predicting Breakout Failure in Nasiriyah Oilfield
...Show More Authors

Wellbore instability is one of the major issues observed throughout the drilling operation. Various wellbore instability issues may occur during drilling operations, including tight holes, borehole collapse, stuck pipe, and shale caving. Rock failure criteria are important in geomechanical analysis since they predict shear and tensile failures. A suitable failure criterion must match the rock failure, which a caliper log can detect to estimate the optimal mud weight. Lack of data makes certain wells' caliper logs unavailable. This makes it difficult to validate the performance of each failure criterion. This paper proposes an approach for predicting the breakout zones in the Nasiriyah oil field using an artificial neural network. It

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Dec 26 2017
Journal Name
Al-khwarizmi Engineering Journal
FPGA Realization of Two-Dimensional Wavelet and Wavelet Packet Transform
...Show More Authors

 

The Field Programmable Gate Array (FPGA) approach is the most recent category, which takes the place in the implementation of most of the Digital Signal Processing (DSP) applications. It had proved the capability to handle such problems and supports all the necessary needs like scalability, speed, size, cost, and efficiency.

In this paper a new proposed circuit design is implemented for the evaluation of the coefficients of the two-dimensional Wavelet Transform (WT) and Wavelet Packet Transform (WPT) using FPGA is provided.

In this implementation the evaluations of the WT & WPT coefficients are depending upon filter tree decomposition using the 2-D discrete convolution algorithm. This implementation w

... Show More
View Publication Preview PDF
Publication Date
Fri Mar 20 2009
Journal Name
Ijcsns International Journal Of Computer Science And Network Security
Pre-processing Importance for Extracting Contours from Noisy Echocardiographic Images
...Show More Authors

Contours extraction from two dimensional echocardiographic images has been a challenge in digital image processing. This is essentially due to the heavy noise, poor quality of these images and some artifacts like papillary muscles, intra-cavity structures as chordate, and valves that can interfere with the endocardial border tracking. In this paper, we will present a technique to extract the contours of heart boundaries from a sequence of echocardiographic images, where it started with pre-processing to reduce noise and produce better image quality. By pre-processing the images, the unclear edges are avoided, and we can get an accurate detection of both heart boundary and movement of heart valves.

Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Digital Image Watermarking Using Arnold Scrambling and Berkeley Wavelet Transform
...Show More Authors

Embedding an identifying data into digital media such as video, audio or image is known as digital watermarking. In this paper, a non-blind watermarking algorithm based on Berkeley Wavelet Transform is proposed. Firstly, the embedded image is scrambled by using Arnold transform for higher security, and then the embedding process is applied in transform domain of the host image. The experimental results show that this algorithm is invisible and has good robustness for some common image processing operations.

View Publication Preview PDF
Publication Date
Thu Apr 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Estimate the Partial Linear Model Using Wavelet and Kernel Smoothers
...Show More Authors

This article aims to estimate the partially linear model by using two methods, which are the Wavelet and Kernel Smoothers. Simulation experiments are used to study the small sample behavior depending on different functions, sample sizes, and variances. Results explained that the wavelet smoother is the best depending on the mean average squares error criterion for all cases that used.

 

 

View Publication Preview PDF
Crossref
Publication Date
Tue Apr 13 2021
Journal Name
Latin American Journal Of Pharmacy
The Experience with Hospitalized COVID-19 Patients in Al-Basra, Iraq: Predictors of the disease severity
...Show More Authors

SUMMARY. The objectives of the present study were to assess the possible predictors of COVID-19 severity and duration of hospitalization and to identify the possible correlation between patient parameters, disease severity and duration of hospitalization. The study included retrospective medical record extraction of previous coron avirus COVID-19 patients in Basra hospitals, Iraq from March 1st and May 31st, 2020. The information of the participants was investigated anonymously. All the patients’ characteristics, treatments, vital signs and laboratory tests (hematological, renal and liver function tests) were collected. The analysis was conducted using the SPSS (version 22, USA). Spearman correlation was used to measure the relations

... Show More
Scopus
Publication Date
Wed Sep 15 2021
Journal Name
Journal Of Baghdad College Of Dentistry
Prevalence of viral co-infection among COVID-19 cases in association disease severity and oral hygiene
...Show More Authors

Background: In December 2019, an episode of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARSCoV2) was reported in Wuhan, China and has spread around the world, increasing the number of contagions. Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) are common herpesviruses that can cause persistent latent infections and affect the developing immune system.The study was conducted to explore the prevalence and reactivation of CMV and EBV antibodies in COVID-19 patients group in comparison to healthy group and to investigate the association between the presence of these viruses with each of severity of disease and oral hygiene. Materials and Methods: Eighty Five subjects were participated in this case control study (5

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (4)
Scopus Crossref