This work describes the weathering effects (UV-Irradiation, and Rain) on the thermal conductivity of PS, PMMA, PS/PMMA blend for packaging application. The samples were prepared by cast method at different ratios (10, 30, 50, 70, and 90 %wt). It was seen that the thermal conductivity of PMMA (0.145 W/m.K), and for PS(0.095 W/m.K), which increases by PS ratio increase up to 50% PS/PMMA blend then decreased that was attributed to increase in miscibility of the blend involved. By UV-weathering, it was seen that thermal conductivity for PMMA increased with UV-weathering up to (30hr) then decreased, that was attributed to rigidity and defect formation, respectively. For 30%PS/PMMA, there results showed unsystematic decrease in thermal conduct
... Show MoreIn this research prepared Epoxy – Talc powder composites with weight ratio of Talc powder (0,5,10,15,20,25)% . The value of thermal conductivity increase with increasing ratio of talc powder and water absorption increase with increasing ratio of talc powder because the structure from magnesium silicate hydroxide and hydrophilic nature .Ethanol absorption decrease with increasing percentage talc powder compared with epoxy pure
In this study the thermal conductivity of the epoxy composites were characterized as function of volume fraction, particle size of fillers and the time of immersion(30,60,90)days in water .Composites plates were prepared by incorporating (bi-directional) (0º-90º) glass fiber and silicon carbide (SiC) particles of (0.1,0.5,1)mm as particle size at (10%,20%,30%,40%) percent volume in epoxy matrix.
The composites shows slightly increase of the thermal conductivity with increasing volume fraction, particle size and increase with increasing the days of immersion in water. The maximum thermal conductivity (0.51W/m.K) was obtained before the immersion in water at 90 days for epoxy reinforcement by bi-directional glass fiber and SiC particl
In this study, the effect of the thermal conductivity of phase change material (PCM) on the performance of thermal energy storage has been analyzed numerically. A horizontal concentric shell-and-tube latent heat thermal energy storage system (LHTESS) has been performed during the solidification process. Two types of paraffin wax with different melting temperatures and thermal conductivity were used as a PCM on the shell side, case1=0.265W/m.K and case2=0.311 W/m.K. Water has been used as heat transfer fluid (HTF) flow through in tube side. Ansys fluent has been used to analyze the model by taking into account phase change by the enthalpy method used to deal with phase transition. The numerical simulatio
... Show MorePositron annihilation lifetime (PAL) technique has been employed to
study the microstructural changes of polyurethane (PU), EUXIT 101
and epoxy risen (EP), EUXIT 60 by Gamma-ray irradiation with the
dose range (95.76 - 957.6) kGy. The size of the free volume hole and
their fraction in PU and EP were determined from ortho-positronium
lifetime component and its intensity in the measured lifetime spectra.
The results show that the irradiation causes significant changes in the
free volume hole size (Vh) and the fractional free volume (Fh), and
thereby the microstructure of PU and EP. The results indicate that
the γ-dose increases the crystallinity in the amorphous regions of PU
and increas
I mpact strength for Epoxy/Polyurethane, Blends and their composites with two
layers of Glass fibers (0-90) are calculated.
The impact strength of the blends and composites decrease with increasing weight
by weisht percentage of polyurethane . This result is attributed to the high elasticity
of PU , and to the immiscibility between the polymer blends as well as the fiber
delaminates
Sheets of Epoxy (EP) resin with addition of TiO2 of grain size (1.5μm, and 50nm) and weight percentage (1%, 3%, and 5%) were prepared. Discs of 20mm diameter and 3mm thickness were cut for dielectric measurements. Dielectric properties (dielectric constant, dispassion factor and electrical conductivity) over the frequency range 102 -106 Hz were measured.
Comparison was made between the effect of micro and nano particles of TiO2 on the dielectric properties of EP composites with different weight percentage. Epoxy composites with micro sized particles of TiO2 were observed to have the better values of dielectric properties.
EP/ metal composites were prepared as adhesives between two steel rods. Epoxy resin (EP) was used as a matrix with metal as fillers (Al, Cu, Fe,).
The preparation method for tensile adhesion tests includes two steel rods with adhesive composites between the rods to measure adhesion strength Sad and adhesion toughness Gad.
Results of tensile adhesion tests show that EP/ metals composite have maximum strength Sad for certain weight percentage of metals 2.95 and 9MPa at 10% for EP/Al and EP/Cu composite and 8.2MPa at 40% for EP/Fe composites
This research studies the development and synthesis of blended nanocomposites filled with Titanium dioxide (TiO2). Blended nanocomposites based on unsaturated polyester resin (UPR) and epoxy resins were synthesized by reactive blending. The optimum quantity from nano partical of titanium dioxide was selected and different weight proportions 1%, 3%, 5%, and 7% ratios of new epoxy are blended with UPR resin. The dielectric breakdown strength and thermal conductivity properties of the blended nanocomposites were compared with those of the basis material (UPR and 3% TiO2).The results show good compatibility epoxy resins with the UPR resin on blending, dielectric breakdown strength values are higher while thermal conductivity values of
... Show More