A study was conducted to evaluate the antibacterial effect of Phyllanthus emblica extract (ethanol:methanol, 1:1) against Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli at different concentrations, i.e. 0.625, 1.25, 2.50, 5.0, 10.0 and 20.0 mg/ml. The antibacterial activity was determined by the agar well diffusion method to investigate the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). The alcoholic extract of Phyllanthus emblica had the highest antibacterial activity at 20 mg/ml and 5 mg/ml except for Pseudomonas aeruginosa where the value of inhibition was between 20 and 10 mg/ml. The MIC concentrations were mostly very high and ranged from 5 to 1.25 mg/ml, while the MBC range from 10 to 2.5 mg/ml against tested bacteria. The Pseudomonas aeruginosa biofilm inhibitory concentration of Phyllanthus emblica extract was 40-6.25 mg/ml. This implies that they may contain valuable substances for application directed against pathogenic biofilms.
A many risk challenge in (settings hospital) are multi- bacteria are antibiotic-resistant. Some type strains that ability adhesion surface-attached bio-film census. Fifteen MRSA isolates were considered as high biofilm producers Moreover all MRSA isolates; M3, M5, M7 and M11 produced biofilms but the thickest biofilm seen M7strain. The MIC values of N. sativa oil against clinical isolates of MRSA were between (0.25, 0.5, 0.75, 1.0) μg/ml While MRSAcin (50, 75, 100, 125) µg\ ml. All biofilms treated with MRSAcin and Nigella sativa developed a presence of live cells after cultured on plate agar with inhibition zone between MIC (18 – 15) and (14- 11)mm respectively.Yet, results showed that MRSA supernatant developed a inhibitory ef
... Show MoreThe synthesis and bioactivity of zinc oxide nanoparticles has been extensively studied. The antibacterial activity of different antibiotics individually (ceftriaxone (C), chloramphenicol (CRO), penicillin (P) and amoxicillin (Ax)) and Zinc oxide nanoparticles (60μg/ml) in combination with the previously mentioned antibiotics has been demonstrated in the present study by using the disk diffusion assay method. The results showed a synergistic effect between Zinc oxide nanoparticles (ZnO NPs) and both Ax and P for most of the studied Gram-positive isolates (Staphylococcus aureus1, Staphylococcus aureus2, Staphylococcus epidermidis1, Staphylococcus epidermidis2, Enterococcus faecalis1, Enterococcus faecalis2 ) and between ZnO NPs and both C
... Show MoreThe fabrication of Solid and Hollow silver nanoparticles (Ag NPs) has been achieved and their characterization was performed using transmission electron microscopy (TEM), zeta potential, UV–VIS spectroscopy, and X-ray diffraction (XRD). A TEM image revealed a quasispherical form for both Solid and Hollow Ag NPs. The measurement of surface charge revealed that although Hollow Ag NPs have a zeta potential of -43 mV, Solid Ag NPs have a zeta potential of -33 mV. According to UV-VIS spectroscopy measurement Solid and Hollow Ag NPs both showed absorption peaks at wavelengths of 436 nm and 412 nm, respectively. XRD pattern demonstrates that the samples' crystal structure is cubic, similar to that of the bulk materials, with
... Show MoreBiomedical alloy 316L stainless steel enhancing to replace biological tissue or to help stabilize a biological structure, such as bone tissue, enhancing were coated with deposition a thin layer of silver nanoparticles as anti-bacterial materials by using DC- magnetron sputtering device. The morphology surface of The growth nanostructure under the influence of different working pressure were studied by atomic force microscope. The average grain size decrease but roughness of the silver thin layer was increased with‖ ―increasing the working pressure. The thickness of silver thin layer was increased from 107 nm at 0.08 mbar to 126 nm at 1.1 mbar. Antimicrobial activity of silver thin layers at different working pressure were studied. Th
... Show MoreOwing to high antibacterial resistance of Pseudomonas aeruginosa, it could be considered as the main reason behind the nosocomial infections. P. aeruginosa has a well-known biofilm forming ability. The expression of polysaccharide encoding locus (pelA gene) by P. aeruginosa is essential for this ability. The purpose of the current research was to determine the biofilm formation in P. aeruginosa isolated from clinical samples and to evaluate the role of the selected PelA gene in biofilm formation using PCR method in Iraqi patients. Results revealed that 24 (96%) isolates were found to have the ability to form biofilm that was remarkably related to gentamicin resistance. Moreover, the pelA gene was found in all biofilm-producers. In c
... Show MoreCopper oxide nanoparticles (CuO NPs) were synthesized by two methods. The first was chemical method by using copper nitrate Cu (NO3)2 and NaOH, while the second was green method by using Eucalyptus camaldulensis leaves extract and Cu (NO3)2. These methods easily give a large scale production of CuO nanoparticles. X-ray diffraction pattern (XRD) reveals single phase monoclinic structure. The average crystalline size of CuO NPs was measured and used by Scherrer equation which found 44.06nm from chemical method, while the average crystalline size was found from green method was 27.2nm. The morphology analysis using atomic force microscopy showed that the grain size for CuO NPs was synthesized by chemical and green methods were 77.70 and 89.24
... Show MoreProteus mirabilis is considered as a third common cause of catheter-associated urinary tract infection, with urease production, the potency of catheter blockage due to the formation of biofilm formation is significantly enhanced. Biofilms are major virulence factors expressed by pathogenic bacteria to resist antibiotics; in this concern the need for providing new alternatives for antibiotics is getting urgent need, This study aimed to explore whether green synthesized zinc oxide nanoparticles (ZnO NPs) can function as an anti-biofilm agent produced by P.mirabilis. Bacterial cells were capable of catalyzing the biosynthesis process by producing reductive enzymes. The nanoparticles were synthesized from cell free
... Show MorePeriodontal disease is typically treated with mechanical debridement of the tooth surface. It may, however, be insufficient to eradicate pathogenic microorganisms on its own. Because of the microbial etiology of periodontitis, systemic or local antibiotic therapy is used as an adjunct treatment. The present study aimed to determine the effects of curcumin gel on Porphyromonas gingivalis. Eleven patients with stage II and III periodontitis were registered in the study. A double-blinded split-mouth design followed. Periodontal pockets were distributed into 2 groups; the test group received scaling and root planing along with curcumin gel, while the control group received scaling and root planing along with a placebo gel. Plaque index,
... Show MoreEleven yoghurt samples were collected from local markets in Baghdad to isolate Lactobacillus buchneri. Only 3 isolates of L. buchneri were found and the isolate No. 3 was the most producer of bacteriocin. Bacteriocin was adsorbed 100% onto silicic acid at pH 6.0-7.0. Below or above these pH values, adsorption was decreased, ranging between 35 and 90%. Therefore, pH 6.0 was used for the purification procedure. The purification procedure including silicic acid adsorption/desorption and cation-exchange chromatography (CEC) resulted in a 11.11 fold increase in the final specific activity of pure bacteriocin (1176.47 Au/mg) compared to the culture supernatant which was 32.64 Au/mg. The molecular weight was determined to be about 3.4 kDa. The bac
... Show More