Fuzzy regression is considered one of the most important regression models, and recently the fuzzy regression model has become a powerful tool for conducting statistical operations, however, the above model also faces some problems and violations, including (when the data is skewed, or no-normal, .....) and thus leads to incorrect results, so it is necessary to find a model to deal with such violations and problems suffered by the regular fuzzy regression models and at the same time be more powerful and immune than the fuzzy regression model called the semi-parametric fuzzy quantile regression. This model is characterized by containing two parts, the first is the fuzzy parametric part (fuzzy inputs and crisp parameters) and the second is the fuzzy nonparametric part for fuzzy triangular numbers, and the semiparametric fuzzy quantile regression is estimated. To demonstrate the effectiveness of our combining model, we will utilize the following Akbari and Hesamian (2019) dataset that was used as a reference case study. Estimate Fuzzy Quantile Regression Model: (FQRM), Fuzzy semi-parametric quantile regression: (FSPQRM), Fuzzy Support Vector Machine: (FSVM), Combining FQRM-FSVR (Comb), Combining FSPQRM-FSVR. Using a new metric measure Jensen–Shannon Distance: (JS) based on fuzzy belonging functions. Two criteria MSM and G1 were used in comparison.
This world is moving towards knowledge economy which basically depends on knowledge and information. So, the economic units need to develop its financial reporting system which helps to provide useful information in timeliness for investors in accordance with the requirements of the knowledge economy and meets the needs of those investors. This research aims to revealing the reflects of knowledge economy on the approaches of financial reporting and suggesting a financial reporting model in the environment of knowledge economy, depending on combining the value approach with the events approach using database and communication technology and providing useful accounting information for all users regardless of
... Show MoreIn this paper, we study the effect of group homomorphism on the chain of level subgroups of fuzzy groups. We prove a necessary and sufficient conditions under which the chains of level subgroups of homomorphic images of an a arbitrary fuzzy group can be obtained from that of the fuzzy groups . Also, we find the chains of level subgroups of homomorphic images and pre-images of arbitrary fuzzy groups
The last few years witnessed great and increasing use in the field of medical image analysis. These tools helped the Radiologists and Doctors to consult while making a particular diagnosis. In this study, we used the relationship between statistical measurements, computer vision, and medical images, along with a logistic regression model to extract breast cancer imaging features. These features were used to tell the difference between the shape of a mass (Fibroid vs. Fatty) by looking at the regions of interest (ROI) of the mass. The final fit of the logistic regression model showed that the most important variables that clearly affect breast cancer shape images are Skewness, Kurtosis, Center of mass, and Angle, with an AUCROC of
... Show MoreA new method presented in this work to detect the existence of hidden
data as a secret message in images. This method must be applyied only on images which have the same visible properties (similar in perspective) where the human eyes cannot detect the difference between them.
This method is based on Image Quality Metrics (Structural Contents
Metric), which means the comparison between the original images and stego images, and determines the size ofthe hidden data. We applied the method to four different images, we detect by this method the hidden data and find exactly the same size of the hidden data.
In this paper by using δ-semi.open sets we introduced the concept of weakly δ-semi.normal and δ-semi.normal spaces . Many properties and results were investigated and studied. Also we present the notion of δ- semi.compact spaces and we were able to compare with it δ-semi.regular spaces
In this paper, compared eight methods for generating the initial value and the impact of these methods to estimate the parameter of a autoregressive model, as was the use of three of the most popular methods to estimate the model and the most commonly used by researchers MLL method, Barg method and the least squares method and that using the method of simulation model first order autoregressive through the design of a number of simulation experiments and the different sizes of the samples.