In order to improve the effectiveness, increase the life cycle, and avoid the blade structural failure of wind turbines, the blades need to be perfectly designed. Knowing the flow angle and the geometric characteristics of the blade is necessary to calculate the values of the induction factors (axial and tangential), which are the basis of the Blade Element Momentum theory (BEM). The aforementioned equations form an implicit and nonlinear system. Consequently, a straightforward iterative solution process can be used to solve this problem. A theoretical study of the aerodynamic performance of a horizontal-axis wind turbine blade was introduced using the BEM. The main objective of the current work is to examine the wind turbine blade’s performance under specific initial and boundary conditions. In this study, NACA 4415 airfoils were selected to do this investigation. The turbine blades were divided into small segments to calculate the forces acting upon each segment to assess their impact on the final wind turbine blade design. An extensive and critical analysis of the chosen wind turbine was performed, including lift, drag, shear force, and bending moment calculations. Based on the computations, the values of total thrust force, torque, and power generation values for the optimal wind turbine were 3755.9 N, 1834 Nm, and 30.122 kW, respectively. Furthermore, a significant finding emerges from the analysis, indicating that the largest difference in power occurs at r/R=0.8, amounting to 5.5239 kW. The new Matlab code was validated. The key contribution of this study lies in enhancing turbine efficiency and reducing fatigue losses through optimizing wind turbine blade design to obtain the highest efficiency level. The outcomes demonstrate that the newly implemented MATLAB code exhibits exceptional accuracy in assessing aerodynamic performance, enabling efficient wind turbine blade design optimization.
The degree of the woman’s satisfaction on clothing depends, to a large extent, on the body measurements. If clothing is very wide, it shows her enormous and if it is too tight it may draw attention to the defects of the body. It may also lead to the compatibility or incompatibility of clothing with fashion. Whatever the quality of the garment in terms of sewing and design, the costume which is not suitable for body size may affect the physical style negatively and may give the wearer an improper look. Clothing was carried out without measurements and did not use models (templates). The method of preparation affected the overall appearance because it often did not fit the shape of the body completely. Therefore, people thought in many w
... Show MoreCold atmospheric plasma (CAP) is used widely in medical and biological fields because of non-thermal effected. Direct application of plasma is preferred in medical functions, so, direct application of cold plasma has obtained by the floating electrode dielectric barrier discharge (FE-DBD) system. The purpose of this paper to review the effect of (CAP) on the reproductive hormones (testosterone, LH, E2, progesterone, for male rats. The study appeared that no significant effect on E2 and progesterone hormone for all time of exposure, besides this significant difference in LH hormone (P<0.05) at 15 sec, (P<0.0001) at 30, 90 sec and (P<0.001) at 60 sec of exposure to plasma. Added to that significant difference (P<0.01) at 15, 30, 60 sec and no
... Show MoreThe CdSe pure films and doping with Cu (0.5, 1.5, 2.5, 4.0wt%) of thickness 0.9μm have been prepared by thermal evaporation technique on glass substrate. Annealing for all the prepared films have been achieved at 523K in vacuum to get good properties of the films. The effect of Cu concentration on some of the electrical properties such as D.C conductivity and Hall effect has been studied.
It has been found that the increase in Cu concentration caused increase in d.c conductivity for pure CdSe 3.75×10-4(Ω.cm)-1 at room temperatures to maximum value of 0.769(Ω.cm)-1 for 4wt%Cu.All films have shown two activation energies, where these value decreases with increasing doping ratio. The maximum value of activation energy was (0.319)eV f
Films of CdSe have been prepared by evaporation technique with thickness 1µm. Doping with Cu was achieved using annealing under argon atmosphere . The Structure properties of these films are investigated by X-ray diffraction analysis. The effect of Cu doping on the orientation , relative intensity, grain size and the lattice constant has been studied. The pure CdSe films have been found consist of amorphous structure with very small peak at (002) plane. The films were polycrystalline for doped CdSe with (1&2wt%) Cu contents and with lattice constant (a=3.741,c=7.096)A°, and it has better crystallinty as the Cu contents increased to (3&5wt%) Cu. The reflections from [(002), (102). (110), (112), and (201)]planes are more prominen
... Show MoreDeep drawing process to produce square cup is very complex process due to a lot of process parameters which control on this process, therefore associated with it many of defects such as earing, wrinkling and fracture. Study of the effect of some process parameters to determine the values of these parameters which give the best result, the distributions for the thickness and depths of the cup were used to estimate the effect of the parameters on the cup numerically, in addition to experimental verification just to the conditions which give the best numerical predictions in order to reduce the time, efforts and costs for producing square cup with less defects experimentally is the aim of this study. The numerical analysis is used to study
... Show MoreBackground: It has been well known that the success of mandibular implant- retained overdenture heavily depends on initial stability, retention and long term osseointegration this is might be due to optimal stresses distribution in surrounding bones. Types of mandibular implant- retained overdenture anchorage system and number of dental implants play an important role in stresses distribution at the implant-bone interface. It is necessary to keep the stresses below the physiologic tolerance level of the bone .since. And it is difficult to measure these stresses around bone in vivo. In the present study, finite element analysis used to study the stresses distribution around dental implant supporting Mandible implant retained overdenture Mate
... Show MoreIn this research, we studied the effect of concentration carriers on the efficiency of the N749-TiO2 heterogeneous solar cell based on quantum electron transfer theory using a donor-acceptor scenario. The photoelectric properties of the N749-TiO2 interfaces in dye sensitized solar cells DSSCs are calculated using the J-V curves. For the (CH3)3COH solvent, the N749-TiO2 heterogeneous solar cell shows that the concentration carrier together with the strength coupling are the main factors affecting the current density, fill factor and efficiency. The current density and current increase as the concentration increases and the
The weight of larvae virgins and Alcamlat for males more than the weight of females of the roles themselves that the highest rate of loss in weight of larvae developed to virgins when field conditions were (21.5,22,21.3) mg during June and July and August respectively, recorded the highest degrees of heat and less attributed to moisture
The research aims to
1 – The discloser of the level of moral values in the children of kindergarten.
2 - Building an educational program designed to develop moral values on the children of kindergarten.
3 - Knowing the impact of the program in the development of moral values in children
Purposive sample was selected consisted of 40 children and a child aged 5-6 years and to achieve objectives of the research promising measure of the moral values kindergarten has been applied to the children of the two groups was based on pre and post test
This paper aims to study the effects of the long term solar activity on the critical frequencies of ionospheric F1 layer over Baghdad city, during the solar cycle 22, within (1988- 1995). It is found that the critical frequency of this layer is closely related to the sunspots number during the years of the solar cycle 22, at a middle latitude region of the world. The study discussed the effect of sunspot numbers and solar events on the electron densities of F1 layer, which is the most important ionospheric parameter.