Background: Alveolar ridge expansion is proposed when the alveolar crest thickness is ≤5 mm. The screw expansion technique has been utilized for many years to expand narrow alveolar ridges. Recently, the osseodensification technique has been suggested as a reliable technique to expand narrow alveolar ridges with effective width gain and as little surgical operating time as possible. The current study aimed to compare osseodensification and screw expansion in terms of clinical width gain and operating time. Materials and methods: Forty implant osteotomies were performed in deficient horizontal alveolar ridges (3–5 mm). A total of 19 patients aged 21–59 years were randomized into two groups: the screw expansion group, which involved 20 osteotomies performed by screw expander drills, and osseodensification group, which comprised 20 osteotomies achieved by osseodensification drilling technique. One millimetre below the alveolar bone crest was measured with a bone caliper at two intervals (before implant osteotomy and after implant osteotomy), and operating time was assessed. Results: Before expansion, the mean alveolar ridge width was 4.20 ± 0.71 mm in the osseodensification group and 4.52 ± 0.53 mm in the screw-expansion group. No statistically significant difference in alveolar bone width before expansion was found between the groups (P > 0.05). After the expansion of the alveolar ridge with osseodensification or screw expansion techniques, the average ridge width was 5.48 ± 0.57 mm in the osseodensification group and 5.71 ± 0.53 mm in the screw-expansion group. Difference in width gain postoperatively between the groups was 0.09 mm, which was not statistically significant (P > 0.05). According to operating time, osseodensification consumed 6.21 ± 0.55 minutes, and screw expansion required 16.32 ± 0.60 minutes for a single implant with a significant difference between the groups (P < 0.0001). Conclusion: Alveolar bone expansion by osseodensification showed comparable width gain and less surgical operating time compared with expansion by screw expansion technique.
This paper introduces a non-conventional approach with multi-dimensional random sampling to solve a cocaine abuse model with statistical probability. The mean Latin hypercube finite difference (MLHFD) method is proposed for the first time via hybrid integration of the classical numerical finite difference (FD) formula with Latin hypercube sampling (LHS) technique to create a random distribution for the model parameters which are dependent on time [Formula: see text]. The LHS technique gives advantage to MLHFD method to produce fast variation of the parameters’ values via number of multidimensional simulations (100, 1000 and 5000). The generated Latin hypercube sample which is random or non-deterministic in nature is further integ
... Show MoreCover crops (CC) improve soil quality, including soil microbial enzymatic activities and soil chemical parameters. Scientific studies conducted in research centers have shown positive effects of CC on soil enzymatic activities; however, studies conducted in farmer fields are lacking in the literature. The objective of this study was to quantify CC effects on soil microbial enzymatic activities (β-glucosidase, β-glucosaminidase, fluorescein diacetate hydrolase, and dehydrogenase) under a corn (Zea mays L.)–soybean (Glycine max (L.) Merr.) rotation. The study was conducted in 2016 and 2018 in Chariton County, Missouri, where CC were first established in 2012. All tested soil enzyme levels were significantly different between 2016 and 2018
... Show MoreThis research aims to removes dyes from waste water by adsorption using banana peels. The conduct experiment done by banana powder and banana gel to compare between them and find out which one is the most efficient in adsorption. Studying the effects different factors on adsorption material and calculate the best removal efficiency to get rid of the methylene blue dye (MB).
Generally, radiologists analyse the Magnetic Resonance Imaging (MRI) by visual inspection to detect and identify the presence of tumour or abnormal tissue in brain MR images. The huge number of such MR images makes this visual interpretation process, not only laborious and expensive but often erroneous. Furthermore, the human eye and brain sensitivity to elucidate such images gets reduced with the increase of number of cases, especially when only some slices contain information of the affected area. Therefore, an automated system for the analysis and classification of MR images is mandatory. In this paper, we propose a new method for abnormality detection from T1-Weighted MRI of human head scans using three planes, including axial plane, co
... Show MoreVehicular Ad Hoc Networks (VANETs) are integral to Intelligent Transportation Systems (ITS), enabling real-time communication between vehicles and infrastructure to enhance traffic flow, road safety, and passenger experience. However, the open and dynamic nature of VANETs presents significant privacy and security challenges, including data eavesdropping, message manipulation, and unauthorized access. This study addresses these concerns by leveraging advancements in Fog Computing (FC), which offers lowlatency, distributed data processing near-end devices to enhance the resilience and security of VANET communications. The paper comprehensively analyzes the security frameworks for fog-enabled VANETs, introducing a novel taxonomy that c
... Show MoreObjective: The goal of this research is to load Doxorubicin (DOX) on silver nanoparticles coupled with folic acid and test their anticancer properties against breast cancer. Methods: Chitosan-Capped silver nanoparticles (CS-AgNPs) were manufactured and loaded with folic acid as well as an anticancer drug, Doxorubicin, to form CS-AgNPs-DOX-FA conjugate. AFM, FTIR, and SEM techniques were used to characterize the samples. The produced multifunctional nano-formulation served as an intrinsic drug delivery system, allowing for effective loading and targeting of chemotherapeutics on the Breast cancer (AMJ 13) cell line. Flowcytometry was used to assess therapy efficacy by measuring apoptotic induction. Results: DOX and CS-Ag
... Show MoreThe objective of an Optimal Power Flow (OPF) algorithm is to find steady state operation point which minimizes generation cost, loss etc. while maintaining an acceptable system performance in terms of limits on generators real and reactive powers, line flow limits etc. The OPF solution includes an objective function. A common objective function concerns the active power generation cost. A Linear programming method is proposed to solve the OPF problem. The Linear Programming (LP) approach transforms the nonlinear optimization problem into an iterative algorithm that in each iteration solves a linear optimization problem resulting from linearization both the objective function and constrains. A computer program, written in MATLAB environme
... Show More