Background: Alveolar ridge expansion is proposed when the alveolar crest thickness is ≤5 mm. The screw expansion technique has been utilized for many years to expand narrow alveolar ridges. Recently, the osseodensification technique has been suggested as a reliable technique to expand narrow alveolar ridges with effective width gain and as little surgical operating time as possible. The current study aimed to compare osseodensification and screw expansion in terms of clinical width gain and operating time. Materials and methods: Forty implant osteotomies were performed in deficient horizontal alveolar ridges (3–5 mm). A total of 19 patients aged 21–59 years were randomized into two groups: the screw expansion group, which involved 20 osteotomies performed by screw expander drills, and osseodensification group, which comprised 20 osteotomies achieved by osseodensification drilling technique. One millimetre below the alveolar bone crest was measured with a bone caliper at two intervals (before implant osteotomy and after implant osteotomy), and operating time was assessed. Results: Before expansion, the mean alveolar ridge width was 4.20 ± 0.71 mm in the osseodensification group and 4.52 ± 0.53 mm in the screw-expansion group. No statistically significant difference in alveolar bone width before expansion was found between the groups (P > 0.05). After the expansion of the alveolar ridge with osseodensification or screw expansion techniques, the average ridge width was 5.48 ± 0.57 mm in the osseodensification group and 5.71 ± 0.53 mm in the screw-expansion group. Difference in width gain postoperatively between the groups was 0.09 mm, which was not statistically significant (P > 0.05). According to operating time, osseodensification consumed 6.21 ± 0.55 minutes, and screw expansion required 16.32 ± 0.60 minutes for a single implant with a significant difference between the groups (P < 0.0001). Conclusion: Alveolar bone expansion by osseodensification showed comparable width gain and less surgical operating time compared with expansion by screw expansion technique.
The goal of this paper is to design a robust controller for controlling a pendulum
system. The control of nonlinear systems is a common problem that is facing the researchers in control systems design. The Sliding Mode Controller (SMC) is the best solution for controlling a nonlinear system. The classical SMC consists from two phases. The first phase is the reaching phase and the second is the sliding phase. The SMC suffers from the chattering phenomenon which is considered as a severe problem and undesirable property. It is a zigzag motion along the switching surface. In this paper, the chattering is reduced by using a saturation function instead of sign function. In spite of SMC is a good method for controlling a nonlinear system b
In this paper we proposed a new method for selecting a smoothing parameter in kernel estimator to estimate a nonparametric regression function in the presence of missing values. The proposed method is based on work on the golden ratio and Surah AL-E-Imran in the Qur'an. Simulation experiments were conducted to study a small sample behavior. The results proved the superiority the proposed on the competition method for selecting smoothing parameter.
* Khalifa E. Sharquie1, Hayder Al-Hamamy2, Adil A. Noaimi1, Mohammed A. Al-Marsomy3, Husam Ali Salman4, American Journal of Dermatology and Venereology, 2014 - Cited by 2
With the increasing reliance on microgrids as flexible and sustainable solutions for energy distribution, securing decentralized electricity grids requires robust cybersecurity strategies tailored to microgrid-specific vulnerabilities. The research paper focuses on enhancing detection capabilities and response times in the face of coordinated cyber threats in microgrid systems by implementing advanced technologies, thereby supporting decentralized operations while maintaining robust system performance in the presence of attacks. It utilizes advanced power engineering techniques to strengthen cybersecurity in modern power grids. A real-world CPS testbed was utilized to simulate the smart grid environment and analyze the impact of cyberattack
... Show MoreA method has been demonstrated to synthesise effective zeolite membranes from existing crystals without a hydrothermal synthesis step.
Active vibration control is the main problem in different structure. Smart material like piezoelectric make a structure smart, adaptive and self-controlling so, they are effective in active vibration control. In this paper piezoelectric elements are used as sensors and actuators in flexible structures for sensing and actuating purposes, and to control the vibration of a cantilever beam by using sliding mode control. The sliding mode controller (SMC) is designed to attenuate the vibration induced by initial tip displacement which is equal to 15 mm. It is designed based on the balance realization reduction method where three states are selected for the reduced model from the 24th states that describe the c
... Show More