This paper studied the behaviour of reinforced reactive powder concrete (RPC) two-way slabs under static load. The experimental program included testing three simply supported slabs of 1000 mm length, 1000 mm width, and 70 mm thickness. Tested specimens were of identical properties except their steel fibers volume ratio (0.5 %, 1 %, and 1.5 %). Static test results revealed that, increasing steel fibers volume ratio from 0.5% to 1% and from 1% to 1.5%, led to an increase in: first crack load by (32.2 % and 52.3 %), ultimate load by (36.1 % and 17.0 %), ultimate deflection by (33.6 % and 3.4 %), absorbed energy by (128 % and 20.2 %), and the ultimate strain by (1.1 % and 6.73 %). The stiffness and ductility of the specimens also increased. A numerical analysis was performed using ANSYS 14.5 software. The FE analysis overestimated the ultimate load capacity of all specimens by (6–28) %, and underestimated the ultimate deflection by (22-44) %. The deflected shape and crack patterns of the FE models were similar to that of the corresponding experimental specimens. It was found out that the optimum values of steel fibers volume fraction are 1.5 % and 1.6%.
The performance of composite prestressed concrete beam topped with reinforced concrete flange structures in fire depends upon several factors, including the change in properties of the two different materials due to fire exposure and temperature distribution within the composition of the composite members of the structure. The present experimental work included casting of 12 identical simply supported prestressed concrete beams grouped into 3 categories, depending on the strength of the top reinforced concrete deck slab (20, 30, and 40 MPa). They were connected together by using shear connector reinforcements. To simulate the real practical fire disasters, 3 composite prestressed concrete beams from each group were exposed to high t
... Show MorePresents here in the results of comparison between the theoretical equation stated by Huang and Menq and laboratory model tests used to study the bearing capacity of square footing on geogrid-reinforced loose sand by performing model tests. The effects of several parameters were studied in order to study the general behavior of improving the soil by using the geogrid. These parameters include depth of first layer of reinforcement, vertical spacing of reinforcement layers, number of reinforcement layers and types of reinforcement layers The results show that the theoretical equation can be used to estimate the bearing capacity of loose sand.
This article deals with the approximate algorithm for two dimensional multi-space fractional bioheat equations (M-SFBHE). The application of the collection method will be expanding for presenting a numerical technique for solving M-SFBHE based on “shifted Jacobi-Gauss-Labatto polynomials” (SJ-GL-Ps) in the matrix form. The Caputo formula has been utilized to approximate the fractional derivative and to demonstrate its usefulness and accuracy, the proposed methodology was applied in two examples. The numerical results revealed that the used approach is very effective and gives high accuracy and good convergence.
Direct measurements of drag force on two interacting particles arranged in the longitudinal direction for particle Reynolds numbers varying from J O to 103 are conducted using a micro-force measurement system. The effect of the interparticle distance and Reynolds number on the drag forces is examined. An empirical equation is obtained to describe the effect of the interparticle distance (l/d) on the dimensionless drag.
In this paper, effective slab width for the composite beams is investigated with special emphasis on the effect of web openings. A three dimensional finite element analysis, by using finite element code ANSYS, is employed to investigate shear lag phenomenon and the resulting effective slab width adopted in the classical T-beam approach. According to case studies and comparison with limitations and rules stipulated by different standards and codes of practice it is found that web openings presence and panel proportion are the most critical factors affecting effective slab width, whereas concrete slab thickness and steel beam depth are less significant. The presence of web opening reduces effective slab width by about 21%.
... Show MoreAlthough the axial aptitude and pile load transfer under static loading have been extensively documented, the dynamic axial reaction, on the other hand, requires further investigation. During a seismic event, the pile load applied may increase, while the soil load carrying capacity may decrease due to the shaking, resulting in additional settlement. The researchers concentrated their efforts on determining the cause of extensive damage to the piles after the seismic event. Such failures were linked to discontinuities in the subsoil due to abrupt differences in soil stiffness, and so actions were called kinematic impact of the earthquake on piles depending on the outcomes of laboratory
There are serious environmental problems in all countries of the world, due to the waste material such as crushed clay bricks (CCB) and in huge quantities resulting from the demolition of buildings. In order to reduce the effects of this problem as well as to preserve natural resources, it is possible to work on recycling (CCB) and to use it in the manufacture of environmentally friendly loaded building units by replacing percentages in coarse aggregate by volume. It can be used as a powder and replacing of percentages in cement by weight and study the effect on the physical and mechanical properties of the concrete and the masonry unit. Evaluation of its performance through workability, dry density, compressive strength, thermal conduct
... Show MoreThe main objective of this study is to understand the work of the pile caps made of lightweight aerated foam concrete and study the many factors affecting the ability and the capacity of the shear. The study was done by analyzing previous practical and theoretical experiences on the reinforced concrete pile caps. The previous practical results indicated that all specimens failed by shear diagonal compression or tension modes except one specimen that failed flexural-shear mode. Based on test specimens' practical results and behavior, some theoretical methods for estimating the ultimate strength of reinforced concrete pile caps have been recommended, some of which evolved into the design documents available on the subject.
... Show MoreExperiments were conducted to study the behavior of the solid particles (proppant) inside the hydraulic fracture during the formation stimulation, and study the effect of the proppant concentration on the hydraulic fracturing process, which lead to bridge and screen-out conditions inside the fractures across the fracture width that restricts fracturing fluid to flow into the hydraulic fracture. The research also studies the effect of the ratio between the fracture size and the average particles diameter “proppant", on fracture bridging. In this study two ratios were considered β= 2 and 3 ,where β=Dt / Dp where: Dt= hydraulic fracture size (width) and Dp=Average particles diameter.
This work pr
... Show More