The dye–semiconductor interface between N749 sensitized and zinc semiconductor (ZnSe) has been investigated and studied according to quantum transition theory with focusing on the electron transfer processes from the N749 sensitized (donor) to the ZnSe semiconductor (acceptor). The electron transfer rate constant and the orientation energy were studied and evaluated depended on the polarity of solvents according to refractive index and dielectric constant coefficient of solvents and ZnSe semiconductor. Attention focusing on the influence of orientation energies on the behavior of electron transfer rate constant. Differentdata of rate constant was discussion with orientation energy and effective driving energy for N749-ZnSe system. Furthermore, the electron transfer rate constant is increased with less orientation energy at less effective driving energy while the electron transfer rate constant increased with large orientation energy with large effective driving energy, as seen as the electron transfer rate reach to 1.3109 × 1011 with less orientation energy has 0.188708eV at effective driving energy E=0.22eV comparing the rate reach to 9.7207× 10−96 with driving energy E=1.89eV and same orientation energy. In general, the electron transfer rate constant increases with increases the coupling coefficient of system, its indicate that alignment of energy levels are very good between N749 sensitized metal and ZnSe semiconductor.
In this paper, the blow-up solutions for a parabolic problem, defined in a bounded domain, are studied. Namely, we consider the upper blow-up rate estimate for heat equation with a nonlinear Neumann boundary condition defined on a ball in Rn.
The molecular structures of acetophenonylidine-4-aminopyridine (I), 2, 6-dihydroxyacetophenonlidine-4-aminopyridine (II), 2, 4, 6- trihydroxyaceto phenonylidine-4-aminopyridine (III) and 2, 6-dihydroxyacetophenonylidine-2-aminopyridine (IV) have been investigated by IR and UV-visible spectrophotometry. The IR data indicate that the hydroxyl groups of these Schiff bases exist as tautomeric mixtures of free and bonded with the azomethine groups. The electronic spectra, effect of polar and nonpolar solvents, and the effect of acidity and basicity on the electronic spectra were studied and discussed. Their charge-transfer (CT) complexes with chloranil in chloroform solvent were also investigated; these complexes absorb light at 398-533 nm. T
... Show MoreMetal enhanced fluorescence (MEF) is an unequaled phenomenon of metal nanoparticle surface plasmons, when light interacts with the metal nanostructures (silver nanoparticles) which result electromagnetic fields to promote the sensitivity of fluorescence. This work endeavor to study the influence of silver nanoparticles on fluorescence intensity of Fluoreseina dye by employment mixture solution with different mixing ratio. Silver nanoparticles had been manufactured by the chemical reduction method so that Ag NP layer coating had been done by hot rotation liquid method. The optical properties of the prepared samples (mixture solution of Fluoreseina dye solutions and colloidal solution with 5 minutes prepared of Ag NPs) tested by using UV-V
... Show MoreThe proton momentum distributions (PMD) and the elastic
electron scattering form factors F(q) of the ground state for some
even mass nuclei in the 2p-1f shell for 70Ge, 72Ge, 74Ge and 76Ge are
calculated by using the Coherent Density Fluctuation Model (CDFM)
and expressed in terms of the fluctuation function (weight function)
|F(x)|2. The fluctuation function has been related to the charge
density distribution (CDD) of the nuclei and determined from the
theory and experiment. The property of the long-tail behavior at high
momentum region of the proton momentum distribution has been
obtained by both the theoretical and experimental fluctuation
functions. The calculated form factors F (q) of all nuclei under s
We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed (LSD)
... Show MoreAbstract
In order to make an improvement associated with rotating biological contactor (RBC), a new design of biofilm reactor called as Rotating perforated disc biological contactor (RPBC) was developed in which the rotating discs are perforated. The transfer of oxygen from air to wastewater was investigated. Mass-transfer coefficient (KLa) in the liquid phase was determined by measuring the rate transfer of oxygen. A laboratory scale of (RPBC) consisted of a semicircular trough was used with a working capacity of 40 liters capacity of liquid. Synthetic wastewater was used as a liquid phase, while air was used as a gas phase.
The effects of m
... Show MoreThe - mixing ratios of -transitions from levels in populated in the reactions are calculated in present work using - ratio, constant statisticalTensor and least squares fitting methods The results obtained are in general, in good agreement or consistent, within the associated uncertainties, with these reported in Ref.[9],the discrepancies that occurs are due to inaccuracy existing in the experimental data The results obtained in the present work confirm the –method for mixed transitions better than that for pure transition because this method depends only on the experimental data where the second method depends on the pure or those considered to be pure -transitions, the same results occur in – method
In this work, electron number density calculated using Matlab program code with the writing algorithm of the program. Electron density was calculated using Anisimov model in a vacuum environment. The effect of spatial coordinates on the electron density was investigated in this study. It was found that the Z axis distance direction affects the electron number density (ne). There are many processes such as excitation; ionization and recombination within the plasma that possible affect the density of electrons. The results show that as Z axis distance increases electron number density decreases because of the recombination of electrons and ions at large distances from the target and the loss of thermal energy of the electrons in high distance
... Show MoreIn this paper, inelastic longitudinal electron scattering form factors C2 and C4
transitions have been studied in Ti 48,50
and Cr 52,54
nuclei with the aid of shell
model calculations. The core polarization transition density was evaluated by
adopting the shape of Tassie model togther with the derived form of the ground state
two-body charge density distributions (2BCDD's). The following transitions have
been investigated; 0 2 2 2 1 1
and 0 2 4 2 1 1
of Ti 48 , 0 3 2 3 1 1
and
0 3 4 3 1 1
of Ti 50 , 0 2 2 2 1 1
and 0 2 4 2 1 1
of Cr 52 and
0 3 2 3 1 1
and 0 3 4 3 1 1
of Cr 54 nuclei. It is fou