The dye–semiconductor interface between N749 sensitized and zinc semiconductor (ZnSe) has been investigated and studied according to quantum transition theory with focusing on the electron transfer processes from the N749 sensitized (donor) to the ZnSe semiconductor (acceptor). The electron transfer rate constant and the orientation energy were studied and evaluated depended on the polarity of solvents according to refractive index and dielectric constant coefficient of solvents and ZnSe semiconductor. Attention focusing on the influence of orientation energies on the behavior of electron transfer rate constant. Differentdata of rate constant was discussion with orientation energy and effective driving energy for N749-ZnSe system. Furthermore, the electron transfer rate constant is increased with less orientation energy at less effective driving energy while the electron transfer rate constant increased with large orientation energy with large effective driving energy, as seen as the electron transfer rate reach to 1.3109 × 1011 with less orientation energy has 0.188708eV at effective driving energy E=0.22eV comparing the rate reach to 9.7207× 10−96 with driving energy E=1.89eV and same orientation energy. In general, the electron transfer rate constant increases with increases the coupling coefficient of system, its indicate that alignment of energy levels are very good between N749 sensitized metal and ZnSe semiconductor.
In the last few years, the use of artificial neural network analysis has increased, particularly, in geotechnical engineering problems and has demonstrated some success. In this research, artificial neural network analysis endeavors to predict the relationship between physical and mechanical properties of Baghdad soil by making different trials between standard penetration test, liquid limit, plastic limit, plasticity index, cohesion, angle of internal friction, and bearing capacity. The analysis revealed that the changes in natural water content and plastic limit have a great effect on the cohesion of soil and the angle of internal friction, respectively. . On the other hand, the liquid limit has a great impact on the bearing capacity and
... Show MoreCoupling reaction of ( 4-amino antipyrene) with the (L- tyrosine ) gave the new azo ligand 2- ( 4- Antipyrene azo ) - tyrosine .Treatment of this ligand with metal ions (Mn(II) ,Co(II), Ni(II), and Cu(II) )in ethanolic medium in (1:2) (M:L) ratio yield a series of a neutral complexes of the general formula [M(L)2] . The prepared complexes were characterized using flame atomic absorption , FT.IR , UV-Vis spectroscopic and elemental microanalysis (C.H.N) as well as magnetic susceptibility and conductivity measurement
Two years field experiment was carried out at Agricultural Fields, College of Agriculture, Baghdad University, Al-Jadriya during 2014-2015 and 2015-2016 to determine the effect of salinity of irrigation water on growth and grain yield of three oat cultivars. The experiments were laid out according to randomized complete blocks design having split plot arrangements with two factors; first factor included three oat cultivars (Shifaa, Hamel and Pimula) while the second factor included three levels of salinity of irrigation water (3, 6 and 9 dS.m-1 ) in addition to the control (river water with salinity level of 1.164 dS.m-1 ) with three replicates. Results revealed a significant effect of salinity of irrigation water on all studied traits. Mea
... Show MoreAcrylamide is a toxic chemical that is created when foods are heated; it is also available in foods containing different additives. The purpose of the study was to determine whether Bacillus spp. isolates could reduce the concentration of acrylamide in food, as well as to compare the different treatments of crude and pure L-asparaginase produced from the same bacteria in acrylamide reduction in potato slices. Our findings reveal that this bacterium could degrade acrylamide and reduce its concentration. Furthermore, the acrylamide content of potato slices reduced dramatically with increasing enzymatic treatment time, reaching the under detection limit (UDL) after 30 minutes of treatment with 84 U/ml of crude and purified
... Show MoreThis research was aimed to study the exposure of Razzazah Lake to major hydrological changes in recent years as a result of natural climatic changes and drought, high evaporation in lake due to stop discharge from Habbaniyah Lake by Al- majera channel. During 2019, we collected surface water samples at three locations, and three samples from groundwater, in addition one samples from each location Imam Ali Drop and Sewage water of Karbala. The Results show that the heavy isotopes in lake and groundwater well are enriched during the warm period, and depleted during the cold period. Chemically, The dominant cations and anions in Al-Razzaza lake water are mainly of in Order Ca > Na > Mg and Cl>SO4 and the water
... Show More