The dye–semiconductor interface between N749 sensitized and zinc semiconductor (ZnSe) has been investigated and studied according to quantum transition theory with focusing on the electron transfer processes from the N749 sensitized (donor) to the ZnSe semiconductor (acceptor). The electron transfer rate constant and the orientation energy were studied and evaluated depended on the polarity of solvents according to refractive index and dielectric constant coefficient of solvents and ZnSe semiconductor. Attention focusing on the influence of orientation energies on the behavior of electron transfer rate constant. Differentdata of rate constant was discussion with orientation energy and effective driving energy for N749-ZnSe system. Furthermore, the electron transfer rate constant is increased with less orientation energy at less effective driving energy while the electron transfer rate constant increased with large orientation energy with large effective driving energy, as seen as the electron transfer rate reach to 1.3109 × 1011 with less orientation energy has 0.188708eV at effective driving energy E=0.22eV comparing the rate reach to 9.7207× 10−96 with driving energy E=1.89eV and same orientation energy. In general, the electron transfer rate constant increases with increases the coupling coefficient of system, its indicate that alignment of energy levels are very good between N749 sensitized metal and ZnSe semiconductor.
Multiple studies support a role for inflammation in the pathogenesis of coronary atherosclerosis and unstable cardiac syndromes. However, of the known pro-inflammatory cytokines, only elevated plasma levels of interleukin-6(IL-6) have been linked to Unstable Angina. We sought to examine the plasma levels of other major proinflammatory cytokines in similar clinical settings patients with unstable angina and acute myocardial infarction and the relationship extent between them. This study aimed to investigate and compare the level of IL-1 in Unstable Angina and Acute Myocardial Infarction patients. Thirty patients with unstable angina and thirty patients with Acute Myocardial Infarction, also thirty healthy individual as control were included
... Show MoreThe prepared nanostructure SiO2 thin films were densified by two techniques (conventional and Diode Pumped Solid State Laser (DPSS) (532 nm). X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), and Atomic Force Microscope (AFM) technique were used to analyze the samples. XRD results showed that the structure of SiO2 thin films was amorphous for both Oven and Laser densification. FESEM and AFM images revealed that the shape of nano silica is spherical and the particle size is in nano range. The small particle size of SiO2 thin film densified by DPSS Laser was (26 nm) , while the smallest particle size of SiO2 thin film densified by Oven was (111 nm).
: Cigarette smoking is a lifestyle behavior that causes significant adverse health effects. Cigarette smoke contains chemicals, many of which are lead to the production of reactive oxygen species (ROS), which can lead to apoptosis and autophagy. To estimate the association of Cigarette smoking with the autophagy and immunity, technology of real time polymerase chain reaction (RTPCR) for gene expression of (LC3A, LC3B, LC3C, myd88) was used. Enzyme-linked immunosorbent assay (ELISA) technique was utilized to measurement the amount of TNF-α protein. The ratios of LC3A/LC3B and LC3B/LC3C were calculated to estimate the autophagy flux. The results indicate the expression of LC3B, LC3C and Myd88 genes in smokers is increased significantly (p
... Show MoreAn oral bi layer sustained release (SR) strips of Sodium Montelukast SMLT , which is selective leukotriene antagonist , used for patients suffered from mid-night asthma , were prepared successfully ,using different polymers, like guar gum , carrageenan , and xanthan gum , by solvent casting method .
The results obtained by this study revealed ,that best fast dissolving film of SMLT was loaded in carrageenan polymer 57% w\w (30mg.) , with acceptable physical properties, like film thickness , elastic endurance and surface pH .
Besides to that , the disintegration t
... Show MoreAd-Hoc Networks are a generation of networks that are truly wireless, and can be easily constructed without any operator. There are protocols for management of these networks, in which the effectiveness and the important elements in these networks are the Quality of Service (QoS). In this work the evaluation of QoS performance of MANETs is done by comparing the results of using AODV, DSR, OLSR and TORA routing protocols using the Op-Net Modeler, then conduct an extensive set of performance experiments for these protocols with a wide variety of settings. The results show that the best protocol depends on QoS using two types of applications (+ve and –ve QoS in the FIS evaluation). QoS of the protocol varies from one prot
... Show MoreAbstract: Tin oxide thin films were deposited by direct current (DC) reactive sputtering at gas pressures of 0.015 mbar – 0.15 mbar. The crystalline structure and surface morphology of the prepared SnO2 films were introduced by X-ray diffraction (XRD) and atomic force microscopy (AFM). These films showed preferred orientation in the (110) plane. Due to AFM micrographs, the grain size increased non-uniformly as the working gas pressure increased.
The investigation of the effect of tempering on thermal analysis of
Al-Ti-Si alloy and its composites with MgO and SiC particles was
performed. Thermal analysis was performed before and after
tempering by DSC scan. Optical microscopy was used to identify the
phases and precipitations that may be formed in base alloy and
composites. X-ray diffraction test indicated that the Al3Ti is the main
phase in Al-Ti-Si alloy in addition to form Al5Ti7Si12 phase. Some
chemical reactions can be occurred between reinforcements and
matrix such as MgO.Al2O3 in Al-Ti/MgO, and Al4C3 and Al(OH)3 in
Al-Ti/SiC composite. X-ray florescence technique is used to
investigate the chemical composition of the fabricated specimens.
H
|
Theoretical spectroscopic studies of beryllium oxide has been carried out, potential energy curves for ground states X1Σ+ and exited states A1Π , B1Σ+ by using two functions Morse and and Varshni compared with experimental results. The potentials of this molecule are agreement with experimental results. The Fortrat Parabola corrcponding to and branches were determind in the range 1<J<20 for the (0-0) band. It was found that for electronic transition A1Π- X1Σ+ the bands head lies in branche of Fortrat p |