The performance of flexible pavements is significantly impacted by the permanent deformation (rutting) of asphalt pavements. Rutting shortens the pavement's useful service life and poses significant risks to those using the highway since it alters vehicle handling characteristics.. The aim of this research is to evaluate the permanent deformation of asphalt mixtures under different conditions,to achieve this aim 108 cylindrical specimens has been prepared and tested under repeated loading in uniaxial compression mode. Five factors were considered in this research, these factors represent the effect of environmental condition and traffic loading as well as mixture properties, they include testing temperature, loading condition (stress level and duration), mixture properties (asphalt type and content). The permanent deformation is evaluated in term of the following parameters, accumulation of permanent strain, axial resilient micro strain, initial permanent strain (intercept, a), accumulation rate of permanent deformation (slope, b), rate of decrease in permanent deformation (α) and constant of proportionality between permanent and elastic strains (µ). Based on the repeated load test results, it was found that when the testing temperature increased from 20 to 40◦C, the permanent strain and intercept increased by a factor of 4.8 and 1.9, respectively. Further increase of the testing temperature from 40 to 60◦C, resulted in the permanent strain increment by a factor of 5.13 whereas the intercept by a factor 2.18. In addition, the test data shows the permanent strain value for load duration of 0.4 sec. is 1.64 times the value for 0.1 sec. Finally, the findings showed that the resilient response of the substance is comparatively more sensitive to asphalt content than the plastic response. Furthermore, the rutting resistance is highly affected by the variables considered in this research.
Aging of asphalt pavements typically occurs through oxidation of the asphalt and evaporation of the lighter maltenes from the binder. The main objective of this study is to evaluate influence of aging on performance of asphalt paving materials.nAsphalt concrete mixtures, were prepared, and subjected to short term aging (STA) procedure which involved heating the loose mixtures in an oven for two aging period of (4 and 8) hours at a temperature of 135 o C. Then it was subject to Long term aging (LTA) procedure using (2 and 5) days aging periods at 85 o C for Marshall compacted specimens. The effect of aging periods on properties of asphalt concrete at optimum asphalt content such as Marshall Properties, indirect tensile strength at 25 o C,
... Show MoreDue to increasing cost of asphalt binder, significant economic savings can be realized by using the amount from reclaimed asphalt pavement (RAP) in the production of new hot mix asphalt (HMA). Moreover, this is an environmentally friendly option as it reduces the demand for virgin materials. It has to be remarked that in Iraq RAP is not used in the production of HMA and this valuable material is mostly degraded for use in lower value applications. Four mixtures were designed, which contains three different percent RAP, it is (0%, 5%, 15%) with asphalt grade (40-50) and (25%) with asphalt grade (60-70), it has been changed the grade of asphalt when adding RAP (25%) to compensate for the aged binder in the RAP when adding to mixture. All type
... Show MoreThe objective of the present paper is to examine the effect of Recycled Asphalt Pavement (RAP) on marshall properties and indirect tensile strength of HMA through experimental investigation. A mixture with 0% RAP was used as a control mix to evaluate the properties of mixes with 5%, 10%, and 15% RAP. One type of RAP was brought from Bab Al-moadam’s road in Baghdad for this purpose. The experimental testing program included Marshall and Indirect Tensile Strength tests. The results indicated that the bulk density, flow and VFA increase with the increasing of the percentage of RAP, while increasing in RAP results decreases in VTM and VMA values. Furthermore, the stability is changed from 10.1 kN for the control mix to12, 13.6 and 11.7 kN
... Show MoreDespite widespread agreement on the beneficial nature of hydrated lime (HL) addition to asphalt concrete mixes, understanding of the effect of HL particle size is still limited. Previous investigations have focused mainly on two different size comparisons, and so certain guidance for a practical application cannot yet be produced. This study investigates three distinct sizes of HL, in the range of regular, nano, and sub-nano scales, for their effects on the properties of modified asphalt concretes. Five different percentages of HL as a partial replacement of ordinary limestone filler in asphalt concrete mixes were studied for wearing course application purposes. Experimental tests were conducted to evaluate the mechanical properties
... Show MoreMineral filler is one of important materials and affecting on properties and quality of asphalt mixtures .There are different types of mineral filler depended on cost and quality , the matter encourages us to achieve this study to evaluate hydrated lime filler effects on properties of asphalt mixes related with strength and durability. Conventional asphaltic concrete mixtures with Portland cement and soft sandstone fillers and mixtures modified with hydrated lime were evaluated for their fundamental engineering properties as defined by Marshall properties , index of retained strength , indirect tensile strength , permanent deformation characteristics , and fatigue resistance .A typical dense graded mixture employed in construction
... Show MoreA flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete
... Show MoreGypseous soil, which covers vast area in west, middle, east and south west regions of Iraq exhibit acceptable strength properties when dry, but it is weak and collapsible when it comes in touch with moisture from rain or other sources. When such weak soil is adopted for earth reinforced embankment construction, it may exhibit hazardous situation. Gypseous soil was investigated for the optimum liquid asphalt requirements of both cutback and emulsion using the one-dimensional unconfined compression strength test. The optimum fluid content was 13% (7% of cutback with 6% water content), and 17% (9% of emulsion with 8% water content). A laboratory model box of 50x50x25 cm was used as a representative of embankment; soil or asphalt stabilize
... Show MoreExperts have given much attention on the use of waste in asphalt paving because of its significance from a sustainability perspective. This paper evaluated the performance properties of asphalt concrete mixes modified with Crumb Rubber (CR) as a partial replacement for two grade sizes of fine aggregate (2.36, and 0.3 mm) at six replacement rates: 0%, 2%, 4%, 6%, 8%, and 10% by weight. Asphalt concrete mixes were prepared at their Optimum Asphalt Content (OAC) and then tested for their engineering properties. Marshall properties, fatigue, rutting, ideal CT index test, Scanning Electron Microscopy (SEM), and Energy-Dispersive X-ray (EDX) spectroscopy were deployed to examine the crystalline structure and elemental composition of the C
... Show MoreIn the recent years, some of the newly constructed asphalt concrete pavements in Baghdad as well as other cities across Iraq showed premature failures with consequential negative impact on both roadway safety and economy. Frequently, load associated mode of failure (rutting and fatigue) as well as, occasionally, moisture damage in some poorly drained sections are the main failure types found in those newly constructed road.
In this research, hydrated lime was introduced into asphalt concrete mixtures of wearing course in two methods. The first one was the addition of dry lime on dry aggregate and the second one was the addition of dry lime on saturated surface dry aggregate moisturized by 2.0 to 3.0 percent of wa
... Show MoreThis research presents an experimental investigation on the influence of metakaolin replacement percentage upon some properties of different concrete types. Three types of concrete were adopted (self- compacted concrete, high performance concrete and reactive powder concrete) all of high sulphate (SO3) percentage from the fine aggregate weight, 0.75%. Three percentages of metakaolin replacement were selected to be studied (5, 7 and 10) %. Three types of concrete properties (compressive, flexural and splitting tensile strength) were adopted to achieve better understanding for the influence of adding metakaolin.. The output results indicated that the percentage of metakaolin had a different level of positive effect on the compressive strength
... Show More