The distress of moisture induced damage in flexible pavement received tremendous attention over the past decades. The harmful effects of this distress expand the deterioration of other known distresses such as rutting and fatigue cracking. This paper focused on the efficiency of using the waste material of demolished concrete to prepare asphalt mixtures that can withstand the effect of moisture in the pavement. For this purpose, different percentages of waste demolished concrete (0, 10, 20, 30, 50, 70 and 100) were embedded as a replacement for coarse aggregate to construct the base course. The optimum asphalt contents were determined depending on the Marshall method. Then after, two parameters were founded to evaluate the moisture susceptibility, namely: the tensile strength ratio (TSR) and the index of retained strength (IRS). To achieve this, the indirect tensile strength test and the compressive test were performed on different fabricated specimens. The results show that mixtures with a higher percentage of demolished concrete possess higher optimum asphalt content as this parameter increased from 3.9 % for control mixture to 4.5 % for mixture with coarse aggregate that fully replaced by demolished concrete. This work indicated that optimum percent of waste demolished concrete that can be utilized in the asphalt mixtures is 30 %, whereas this percent recorded higher value of increased increments for TSR and IRS by 10.6 % and 7.9 % respectively.
Rutting is mainly referring to pavement permanent deformation, it is a major problem for flexible pavement and it is a complicated process and highly observed along with many segments of asphalt pavement in Iraq. The occurrence of this defect is related to several variables such as elevated temperatures and high wheel loads. Studying effective methods to reduce rutting distress is of great significance for providing a safe and along-life road. The asphalt mixture used to be modified by adding different types of additives. The addition of additives typically excesses stiffness, improves temperature susceptibility, and reduces moisture sensitivity. For this work, steel fibres have been used for modifying asphalt mixture as they incorp
... Show MoreCorrosion inhibiting admixtures are unique among other methods to protect reinforced concrete from corrosion damage. In this study, the effect of furfural on the fresh and hardened properties of concrete mixes of 35 and 45 MPa compressive strengths as well as the corrosion inhibition of furfural was evaluated. Furfural was added at different dosages (1, 2 and 3% by weight of cement) with and without superplasticizer (HRWR). Different electrochemical measurements were performed (Half-cell potential, Tafel plot and linear polarization resistance). Electrochemical measurements confirmed that furfural dramatically reduces the rate of corrosion; the inhibition efficiencies were 62.7 and 63.8 % due to 3% furfural addition to 35 and 45MPa-concr
... Show MoreThe growing demand for sustainable and high-performance asphalt binders has prompted the exploration of waste-derived modifiers. This study investigates the performance enhancement of Natural Asphalt (NA) using Sugarcane Molasses (SM) and Waste Engine Oil (WEO). The modified blends were prepared by partially replacing 50 % NA with varying proportions of SM and WEO ranging from 10 % to 40 % of the total weight of NA. Comprehensive testing was conducted, including penetration, softening point, ductility, viscosity, Bending Beam Rheometer (BBR), Multiple Stress Creep Recovery (MSCR), Energy Dispersive X-ray Spectroscopy (EDX), Fourier Transform Infrared (FTIR) spectroscopy, and Scanning Electron Microscopy (SEM). The results demonstrated that
... Show MoreAsphalt pavement properties in Iraq are highly affected by elevated summer air temperatures. One of these properties is stiffness (resilient modulus). To explain the effect of air temperatures on stiffness of asphalt concrete, it is necessary to determine the distribution of temperatures through the pavement asphalt concrete layers. In this study, the distribution of pavement temperatures at three depths (2cm,7cm, 10cm) below the pavement surface is determined by using the temperature data logger instrument. A relationship for determining pavement temperature as related to depth and air temperature has been suggested. To achieve the objective of this thesis, the prepared specimens have been tested for indirect tension in accordance with
... Show MoreMany waste materials can be repurposed effectively within asphalt concrete to enhance the performance and sustainability of pavement. One of these waste materials is sawdust ash (SDA). This study explores the beneficial use of SDA as a substitute for limestone dust (LD) mineral filler in asphalt concrete. The replacement rate was 0%, 15%, 30%, 45%, and 60% by weight of total mineral filler. Scanning electron microscopy (SEM) was employed to assess the surface morphology of Sawdust (SD), SDA, and LD. In addition, a series of tests, including Marshall stability and flow, indirect tensile strength,moisture susceptibility, and repeated uniaxial loading tests, were conducted to examine the performance characteristics of asphalt mixtures of diffe
... Show MoreFatigue cracking is the most common distress in road pavement. It is mainly due to the increase in the number of load repetition of vehicles, particularly those with high axle loads, and to the environmental conditions. In this study, four-point bending beam fatigue testing has been used for control and modified mixture under various micro strain levels of (250 μƐ, 400 μƐ, and 750 μƐ) and 5HZ. The main objective of the study is to provide a comparative evaluation of pavement resistance to the phenomenon of fatigue cracking between modified asphalt concrete and conventional asphalt concrete mixes (under the influence of three percentage of Silica fumes 1%, 2%, 3% by the weight of asphalt content), and (chan
... Show MoreFlexible pavements are subjected to three main distress types: fatigue crack, thermal crack, and permanent deformation. Under severe climate conditions, thermal cracking particularly contributes largely to a considerable scale of premature deterioration of pavement infrastructure worldwide. This challenge is especially relevant for Europe, as weather conditions vary significantly throughout the year. Hydrated lime (HL) has been recognized as an effective additive to improve the mechanical properties of asphalt concrete for pavement applications. Previous research has found that a replacement of conventional limestone dust filler using hydrated lime at 2.5% of the total weight of aggregates generated an optimum improvement in the mec
... Show MoreTests were performed on Marshall samples and were implemented for permanent deformation and resilient modulus (Mr) under indirect tensile repeated loading (ITRL), with constant stress level. Two types of liquid asphalt (cutback and emulsion) were tried as recycling agents, aged materials that were reclaimed from field (100% RAP), samples were prepared from the aged mixture, and two types of liquid asphalt (cutback and emulsion) with a weight content of 0.5% were utilized to prepare a recycled mixture. A group of twelve samples was prepared for each mixture; six samples were tested directly for ITRL test (three samples at 25˚C and three samples at 40˚C), an average value for ITRL for every three samples was calculated (
... Show MoreUndoubtedly, rutting in asphalt concrete pavement is considered a major dilemma in terms of pavement performance and safety faced by road users as well as the road authorities. Rutting is a bowl-shaped depression in the wheel paths that develop gradually with the increasing number of load applications. Heavy axle loadings besides the high pavement summer temperature enhance the problem of rutting. According to the AASHTO design equation for flexible pavements, a 1.1 in rut depth will reduce the present serviceability index of relatively new pavement, having no other distress, from 4.2 to 2.5. With this amount of drop in serviceability, the entire life of the pavement in effect has been lost. Therefore, it is crucial to look at the mechani
... Show MoreAbstract
This work involves studying the effect of adding some selective organic component mixture on corrosion behavior of pure Al and its alloys in condensed synthetic automotive solution (CSAS) at room temperature. This mixture indicates the increasing of octane number in previous study and in this study show the increasing in corrosion resistance through the decreasing in corrosion rate values.
Electrochemical measurements were carried out by potentiostat at 3 mV/sec to estimate the corrosion parameters using Tafel extrapolation method, in addition to cyclic polarization test to know the pitting susceptibility of materials in tested medium.
The cathodic Tafel slope
... Show More