In recent decades, the identification of faces with and without masks from visual data, such as video and still images, has become a captivating research subject. This is primarily due to the global spread of the Corona pandemic, which has altered the appearance of the world and necessitated the use of masks as a vital measure for epidemic prevention. Intellectual development based on artificial intelligence and computers plays a decisive role in the issue of epidemic safety, as the topic of facial recognition and identifying individuals who wear masks or not was most prominent in the introduction and in-depth education. This research proposes the creation of an advanced system capable of accurately identifying faces, both with and without masks. The suggested system incorporates a multi-layer neural network (CNN) and a gray-level co-occurrence matrix (GLCM). It also uses techniques for preparing and preprocessing data. These additions aim to enhance the efficiency and accuracy of the system's identification algorithm. The YOLO5 neural network algorithm was utilized in the post-processing phase, with the addition of a new layer consisting of six phases. We formed this layer by integrating two algorithms, GLCM and CNN. The algorithm has become effective for real-time object recognition. The obtained accuracy results showed that the proposed system successfully combined the face mask (0.975) and face datasets. (0.925).
Parasitic diseases can affect infection with COVID-19 obviously, as protective agents, or by reducing severity of this viral infection. This current review mentions the common symptoms between human parasites and symptoms of COVID-19, and explains the mechanism actions of parasites, which may prevent or reduce severity of this viral infection. Pre-existing parasitic infections provide prohibition against pathogenicity of COVID-19, by altering the balance of gut microbiota that can vary the immune response to this virus infection.
One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreThe prevalence of using the applications for the internet of things (IoT) in many human life fields such as economy, social life, and healthcare made IoT devices targets for many cyber-attacks. Besides, the resource limitation of IoT devices such as tiny battery power, small storage capacity, and low calculation speed made its security a big challenge for the researchers. Therefore, in this study, a new technique is proposed called intrusion detection system based on spike neural network and decision tree (IDS-SNNDT). In this method, the DT is used to select the optimal samples that will be hired as input to the SNN, while SNN utilized the non-leaky integrate neurons fire (NLIF) model in order to reduce latency and minimize devices
... Show MoreCybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a
... Show MoreCybersecurity refers to the actions that are used by people and companies to protect themselves and their information from cyber threats. Different security methods have been proposed for detecting network abnormal behavior, but some effective attacks are still a major concern in the computer community. Many security gaps, like Denial of Service, spam, phishing, and other types of attacks, are reported daily, and the attack numbers are growing. Intrusion detection is a security protection method that is used to detect and report any abnormal traffic automatically that may affect network security, such as internal attacks, external attacks, and maloperations. This paper proposed an anomaly intrusion detection system method based on a
... Show MoreCoronavirus: (COVID-19) is a recently discovered viral disease caused by a new strain of coronavirus.
The majority of patients with corona-virus infections will have a mild-moderate respiratory disease that recovers without special care. Most often, the elderly, and others with chronic medical conditions such as asthma, coronary disease, respiratory illness, and malignancy are seriously ill.
COVID-19 is spread mostly by salivary droplets or nasal secretions when an infected person coughs or sneezes.
COVID-19 causes severe acute respiratory illness (SARS-COV-2). The first incidence was recorded in Wuhan, China, in 2019. Since then it spreads leading to a pandemic.
... Show MoreABSTRACT Objective: Cardiovascular diseases are the first ranked cause of death worldwide. Adhering to health promoting lifestyle behaviors will maintain an individual’s cardiovascular health and decrease the risk of cardiovascular diseases. Methods: In this descriptive study, 150 nursing faculty were surveyed via a non-probability (purposive) sampling method to assess their adherence to health promoting lifestyle in order to know the risk of cardiovascular diseases. The Arabic version of Health-Promoting Lifestyle Profile II (HPLP-II) was used to achieve this goal. Results: Seventy-two nursing faculty completed the survey. The results indicated that the study sample had moderate level of health promotion based on Health-Promot
... Show More