The development of low profile gamma-ray detectors has encouraged the production of small field of view (SFOV) hand-held imaging devices for use at the patient bedside and in operating theatres. Early development of these SFOV cameras was focussed on a single modality—gamma ray imaging. Recently, a hybrid system—gamma plus optical imaging—has been developed. This combination of optical and gamma cameras enables high spatial resolution multi-modal imaging, giving a superimposed scintigraphic and optical image. Hybrid imaging offers new possibilities for assisting clinicians and surgeons in localising the site of uptake in procedures such as sentinel node detection. The hybrid camera concept can be extended to a multimodal detector design which can offer stereoscopic images, depth estimation of gamma-emitting sources, and simultaneous gamma and fluorescence imaging. Recent improvements to the hybrid camera have been used to produce dual-modality images in both laboratory simulations and in the clinic. Hybrid imaging of a patient who underwent thyroid scintigraphy is reported. In addition, we present data which shows that the hybrid camera concept can be extended to estimate the position and depth of radionuclide distribution within an object and also report the first combined gamma and Near-Infrared (NIR) fluorescence images.
Numerical simulations are carried out to investigate the possibility of observing
extrasolar planet nearby star via optical telescopes. Several techniques are
considered in this study in order to quantitatively assess their quality in suppressing
the wings of the point spread function of optical telescope of a reference star. The
optical telescope with circular Gaussian shape aperture reveals extrasolar planet
even with contrast ratio 10-7 while the square Gaussian shape aperture reveals the
planet with 10-5.
Background: Although ultrasonography (US) continues to be the primary imaging modality used to identify and characterize adnexal masses, but certain conditions that hinder accurate ultrasound examination, such as obesity, may be indications for magnetic resonance (MR) imaging, for the assessment of complex and indeterminate ovarian masses.
Objective: to assess the ability of MRI to characterize sonographically indeterminate adnexal masses.
Patients and methods: A prospective study of 89 cases with sonographically indeterminate adnexal mass underwent pelvic MRI conducted in X-ray institute in medical city in Baghdad during period from October 2011 to January 2013 & the results compared to the final diagn
Background: One of the most significant advances in the treatment of intra-abdominal collections during the past 2 decades has been the introduction of image-guided therapy with percutaneous catheter drainage. The development of improved imaging modalities, together with broad-spectrum antibiotics and soft drainage catheters, has changed the treatment of collections that previously required an urgent operation. Disease processes that have traditionally been treated with open surgical drainage and debridement can now be resolved with percutaneous catheter drainage and antibiotics. In selected cases, this will allow for better preparation of the patient for a later elective and definitive operation.
Objective: Highlight the outcome, saf
In this work, the characterization and application of thin films composite incorporated titanium dioxide (TiO2) (0.8)% volume ratio for (Rutile) nanostructure with poly [2- methoxy-5-(2’-ethylhexoxy-p-phenylene vinylene] (MEH-PPV) were deposited by a spin-coating technique. The optical properties for deposited (MEH-PPV/TiO2) nanocomposite thin films have two peaks which are the Q-band in the visible region and B-band in ultraviolet. This study shows that the absorption spectrum of organic polymer mixing with TiO2 increased with increasing the volume ratios TiO2. The I-V characteristic of nanocomposite thin films shows that the current at dark and light condition
... Show MoreThe analysis of survival and reliability considered of topics and methods of vital statistics at the present time because of their importance in the various demographical, medical, industrial and engineering fields. This research focused generate random data for samples from the probability distribution Generalized Gamma: GG, known as: "Inverse Transformation" Method: ITM, which includes the distribution cycle integration function incomplete Gamma integration making it more difficult classical estimation so will be the need to illustration to the method of numerical approximation and then appreciation of the function of survival function. It was estimated survival function by simulation the way "Monte Carlo". The Entropy method used for the
... Show MoreThis paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).
The Local manufacturing scanning gamma system designed in Tuwaitha site for nondestructive assay method of radioactive waste drums, where it consist of two main parts with their belongings for controlling the of detector and drum movements up-down and rotation respectively. The volume of the used drum is 220 L with 85 cm height. The drum filled with Portland cement. Six cylindrical holes were made within cement drum and distributed in radial arrangement.The152Eu source inserted in these holes individually, to measure the average angular count rate of gamma radiation. The full energy efficiency value for geometry of drum and detector is computed for thirteen photo peaks. The average efficiency represented by the curve of these peaks indic
... Show MoreThis paper deals with, Bayesian estimation of the parameters of Gamma distribution under Generalized Weighted loss function, based on Gamma and Exponential priors for the shape and scale parameters, respectively. Moment, Maximum likelihood estimators and Lindley’s approximation have been used effectively in Bayesian estimation. Based on Monte Carlo simulation method, those estimators are compared in terms of the mean squared errors (MSE’s).