The research aims to analyze the television advertisement to monitor the indirect and underlying meanings behind the apparent significance in Zain’s “Ya Baghdad” Advertisement through sociological analysis, in accordance with the cultural analysis of Hofstede’s ‘Model of Cultural Dimensions’. Our choice of such a model in practical application over other models that may have provided more dimensions is due to its ability and verification in explaining cultural diversity and additionally the size of data and studies on the cultural dimension. This study’s aim is to verify the validity, stability and significance of this model before being adopted by Hofstede as a measurement tool. This model was used in order to analyze the relationship between the text and the image, and to recognize the factors affecting the semiotics of the image as it includes signs, symbols, rules and connotations that have roots in the prevailing social or intellectual conditions in society. The analysis lies in deciphering these symbols, rules and connotations found in the film’s image, which includes the content as a visual text, and in turn contributes in forming the meaning. The research concluded that there is a consistent relationship between the linguistic and semiotic patterns of television advertisements and the specific national culture that are produced or for which they are produced. Hofstede's indicators of cultural dimensions and related societal norms; and core values have proven to be a useful framework for interpreting many distinct linguistic and semiotic patterns in television advertisements.
HTH Ali Tarik Abdulwahid , Ahmed Dheyaa Al-Obaidi , Mustafa Najah Al-Obaidi, eNeurologicalSci, 2023
<p>Energy and memory limitations are considerable constraints of sensor nodes in wireless sensor networks (WSNs). The limited energy supplied to network nodes causes WSNs to face crucial functional limitations. Therefore, the problem of limited energy resource on sensor nodes can only be addressed by using them efficiently. In this research work, an energy-balancing routing scheme for in-network data aggregation is presented. This scheme is referred to as Energy-aware and load-Balancing Routing scheme for Data Aggregation (hereinafter referred to as EBR-DA). The EBRDA aims to provide an energy efficient multiple-hop routing to the destination on the basis of the quality of the links between the source and destination. In
... Show MoreWildfire risk has globally increased during the past few years due to several factors. An efficient and fast response to wildfires is extremely important to reduce the damaging effect on humans and wildlife. This work introduces a methodology for designing an efficient machine learning system to detect wildfires using satellite imagery. A convolutional neural network (CNN) model is optimized to reduce the required computational resources. Due to the limitations of images containing fire and seasonal variations, an image augmentation process is used to develop adequate training samples for the change in the forest’s visual features and the seasonal wind direction at the study area during the fire season. The selected CNN model (Mob
... Show MoreElectronic Health Record (EHR) systems are used as an efficient and effective method of exchanging patients’ health information with doctors and other key stakeholders in the health sector to obtain improved patient treatment decisions and diagnoses. As a result, questions regarding the security of sensitive user data are highlighted. To encourage people to move their sensitive health records to cloud networks, a secure authentication and access control mechanism that protects users’ data should be established. Furthermore, authentication and access control schemes are essential in the protection of health data, as numerous responsibilities exist to ensure security and privacy in a network. So, the main goal of our s
... Show MoreThe rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreRecently emerging pandemic SARS CoV-2 conquered our world since December 2019. Continuous efforts have been done to find out effective immunization and precise treatment stetratigies A way from therapeutic options that were tried in SARS CoV-2, an increased attention is directed to predict natural products and mainly phytochemicals as collaborative measures for this crisis. In this review, most of the mentioned compounds specially flavonoids (biacalin, hesperidin, quercetin, luteolin,, and phenolic (resveratrol, curcumin, and theaflavin) exert their effect through interfering with the action of one or more of this proteins (spike protein, papain like protease, 3 chymotrypsin like cysteine protease, and RNA dependent RNA
... Show More