Bioethanol produced from lignocellulose feedstock is a renewable substitute to declining fossil fuels. Pretreatment using ultrasound assisted alkaline was investigated to enhance the enzyme digestibility of waste paper. The pretreatment was conducted over a wide range of conditions including waste paper concentrations of 1-5%, reaction time of 10-30 min and temperatures of 30-70°C. The optimum conditions were 4 % substrate loading with 25 min treatment time at 60°C where maximum reducing sugar obtained was 1.89 g/L. Hydrolysis process was conducted with a crude cellulolytic enzymes produced by Cellulomonas uda (PTCC 1259).The maximum amount of sugar released and hydrolysis efficiency were 20.92 g/L and 78.4 %, respectively. Sugars released from waste paper were fermented into bioethanol with Saccharomyces cerevisiae. The maximum concentration of bioethanol estimated was 9.5 g/L after 48h of cultivation, the yield and volumetric productivity were 0.454 g/g glucose and 0.2g bioethanol/ L h. respectively. This study of ultrasound and sodium hydroxide treatment may be (we think) it will be a promising technique to develop bioethanol production from waste paper.
There is no access to basic sanitation for half the world's population, leading to Socioeconomic issues, such as scarcity of drinking water and the spread of diseases. In this way, it is of vital importance to develop water management technologies relevant to the target population. In addition, in the separation form of water treatment, the compound often used as a coagulant in water treatment is aluminum sulfate, which provides good results for raw water turbidity and color removal. Studies show, however, that its deposition in the human body, even Alzheimer's disease, can cause serious harm to health and disease development. The study aims to improve the coagulation/flocculation stage related to the amount of flakes, i
... Show MoreThis study was conducted to determine the ability of water treatment system (Vortisand) to reduce some chemical and physical properties for tigris river raw water, It consisted of turbidity, electrical conductivity, pH, total hardness, calcium Hardness as well as temperature in order to determine the unit`s efficiency for reducing their concentration as compared to those in the water produced by some classical potable water projects (Dora and Wathba) in Baghdad. Samples were collected during the cold months (December 2016 and January 2017) and during the hot months (May and June 2017). The results showed that this system has the ability to reduce some properties such as turbidity, the values were 215NTU in raw water and decreased to NTU
... Show MoreBackground: Sinusitis is an inflammatory condition that affects the mucous membrane lining the airways. Chronic rhinosinusitis and acute rhinosinusitis are the two types. Rhinosinusitis is characterized by facial pain, congestion, and headache. Due to the widespread prevalence of sinusitis, there must be an evaluation of the case because the diagnoses are more serious in the advanced stages of the disease and impact the outcome of care. Objectives: The objective of this study was to conduct a literature evaluation of chronic and acute rhinosinusitis, risk factors, symptoms and signs of sinusitis, diagnostic, sinusitis treatment, and antibiotic treatment, as well as new databases. Conclusion:
... Show MoreFifty isolates of Bacillus spp were obtained from rhizosphere soil of compositae
plant roots. The ability of inulinase production by these isolates was screened.
Bacillus Be9, which isolated from soil of lettuce root, was the highest inulinase
producer; it was identified as Bacillus cereus. Optimal culture medium and
condition for inulinase production were determinatd; the highest inulinase
production was obtained when the bacteria was cultured in inulin medium which
contained 0.5% inulin, 0.4% peptone as carbon and nitrogen source at pH 7.0
inoculated with 1ml of bacterial suspension and incubated at 40˚C for 48hrs.
The world is confronted with the twin crisis of fossil fuel depletion and environmental degradation caused by fossil fuel usage. Biodiesel produced from renewable feedstocks such as Jatropha seed oil or animal fats by transesterification offers a solution. Although biodiesel has been produced from various vegetable oils such as Jatropha seed oil, the reaction kinetics studies are very few in literature, hence the need for this study. Jatropha curcas seed oil was extracted and analyzed to determine its free fatty acid and fatty acid composition. The oil was transesterified with methanol at a molar ratio of methanol to oil 8:1, using 1% sodium hydroxide catalyst, at different temperature
... Show MoreMost of the recent works related to the construction industry in Iraq are focused on investigating the validity of local raw materials as alternatives to the imported materials necessary for some practical applications, especially in thermal and sound insulation. This investigation includes the use of limestone dust as partial substitution of cement in combination with foam agent and silica fume to produce sustainable Lightweight Foam Concrete (LWFC). This study consists of two stages. In the first stage, trial mixes were performed to find the optimum dosage of foam agent. Limestone dust was used as a partial replacement for cement. Chemical analysis and fineness showed great similarity with cement. Many concrete mixes were prepared
... Show MoreNowadays, the field of radionuclide treatment is enjoying an exciting stage and preparing for further growth and progress in the future. For instance, in Asia, the large spread of liver and thyroid diseases has resulted in several new developments/clinical trials using molecular radiotherapy (i.e. targeted radionuclide therapy). Iodine-124 has unique physical properties including long half-life that adding an advantage for pharmacokinetics and radiopharmaceutical analysis. One of its applications in nuclear medicine is in Positron Emission Tomography (PET).
Prepared zeolite type A was used for theremoval of cesium ions from aqueous solution. The experimental data were analyzed by Langmuir, Freundlich isotherms. Various parameters, such as contact time, zeolite weight, pH, and initial concentration, were studied. The results indicated that the highest removal efficiency was95.53% at (2h time, 0.04 g weight, and pH=6.8). The results also showed that the Freundlic model fits well with the experimental results and is better than the Langmuir model.