Bioethanol produced from lignocellulose feedstock is a renewable substitute to declining fossil fuels. Pretreatment using ultrasound assisted alkaline was investigated to enhance the enzyme digestibility of waste paper. The pretreatment was conducted over a wide range of conditions including waste paper concentrations of 1-5%, reaction time of 10-30 min and temperatures of 30-70°C. The optimum conditions were 4 % substrate loading with 25 min treatment time at 60°C where maximum reducing sugar obtained was 1.89 g/L. Hydrolysis process was conducted with a crude cellulolytic enzymes produced by Cellulomonas uda (PTCC 1259).The maximum amount of sugar released and hydrolysis efficiency were 20.92 g/L and 78.4 %, respectively. Sugars released from waste paper were fermented into bioethanol with Saccharomyces cerevisiae. The maximum concentration of bioethanol estimated was 9.5 g/L after 48h of cultivation, the yield and volumetric productivity were 0.454 g/g glucose and 0.2g bioethanol/ L h. respectively. This study of ultrasound and sodium hydroxide treatment may be (we think) it will be a promising technique to develop bioethanol production from waste paper.
This work is licensed under a Creative Commons Attribution 4.0 International License. Abstract This study examines the working capital management
Industrial Investment according to Clean Productive methods is an important element in the process of rational use of Economic Resources, and the Iraqi industrial sector relied on traditional production methods; the productive activities in this sector did not take into consideration the environmental dimension, which leads to achieving the optimal use of economic resources, so it was necessary to have new investment trends heading with Clean Production. Therefore, the research is based on the hypothesis that "Clean Production contributes to improving the environment and rational use of Natural Resources." Based on the descriptive - inductive analysis methodology that study of Iraqi industries with Clean Production,
... Show MoreThe present work concerns with simulating unsteady state equilibrium model for production of methyl oleate (biodiesel) from reaction of oleic acid with methanol using sulfuric acid as a catalyst in batch reactive distillation. MESHR equations of equilibrium model were solved using MATLAB (R2010a). The validity of simulation model was tested by comparing the simulation results with a data available in literature. UNIQUAC liquid phase activity coefficient model is the most appropriate model to describe the non-ideality of OLAC-MEOH-MEOL-H2O system. The chemical reactions rates results from EQ model indicating the rates are controlled by chemical kinetics. Several variables was studied such as molar ratio of methanol to oleic acid 4:1, 6:1
... Show MoreThis research aims to estimate production functions through which production relations, possibilities for production elements substitution, measurement of its substitution elasticity, and efficiency and distribution coefficients can be analyzed. This would be done through estimation of constant elasticity of substitution production function for agricultural companies in Iraq depending on data from Iraqi Stock Exchange reports of 2005-2016. The researcher had used panel data model and estimated its three models: the Pooled Regression Model (PRM), the Fixed Effect Model (FEM) and the Random Effect Model (REM). A comparison was made for theses three models using F, LM, Husman tests. Tests show that Fixed Effect Model (FEM) is the best
... Show MoreAggregate production planning (APP) is one of the most significant and complicated problems in production planning and aim to set overall production levels for each product category to meet fluctuating or uncertain demand in future. and to set decision concerning hiring, firing, overtime, subcontract, carrying inventory level. In this paper, we present a simulated annealing (SA) for multi-objective linear programming to solve APP. SA is considered to be a good tool for imprecise optimization problems. The proposed model minimizes total production and workforce costs. In this study, the proposed SA is compared with particle swarm optimization (PSO). The results show that the proposed SA is effective in reducing total production costs and req
... Show MoreBacteria could produce bacterial nanocellulose through a procedure steps: polymerization and crystallization, that occur in the cytoplasm of the bacteria, the residues of glucose polymerize to (β-1,4) lineal glucan chains that produced from bacterial cell extracellularly, these lineal glucan are converted to microfbrils, after that these microfbrils collected together to shape very pure three dimensional pored net. It could be obtained a pure cellulose that created by some M.O, from the one of the active producer organism like Acetic acid bacteria (AAB), that it is a gram -ve, motile and live in aerobic condition. The bacterial nanocellulose (BNC) have great consideration in many fields because of its flexible properties, features
... Show MoreCombination of natural poly-phenolic compounds with chemotherapeutic agents is recently being a novel strategy in cancer therapy researches owing to their potential antioxidant and anti-inflammatory properties that modulate several intracellular signaling pathways.
Resveratrol and Baicalein are well known poly-phenolic compounds that belong to stilbene and flavone subclasses, respectively.
This study aims to investigate the possible enhancement effect of resveratrol and Baicalein when combined with doxorubicin using a different combination ratio and applied on two cancer cell lines: HCT116 (colorectal cancer cells) and HepG2 (hepatocellular cancer cells). It also investigates the possibility of such natural compounds to p
... Show MoreAbstract
Anaerobic digestion process of organic materials is biochemical decomposition process done by two types of digestion bacteria in the absence of oxygen resulting in the biogas production, which is produced as a waste product of digestion. The first type of bacteria is known as acidogenic which converts organic waste to fatty acids. The second type of bacteria is called methane creators or methanogenic which transforms the fatty acids to biogas (CH4 and CO2). The considerable amounts of biodegradable constitutes such as carbohydrates, lipids and proteins present in the microalgae biomass make it a suitable substrate for the anaerobic digestion or even c
... Show More