In this work, a novel design for the NiO/TiO2 heterojunction solar cells is presented. Highly-pure nanopowders prepared by dc reactive magnetron sputtering technique were used to form the heterojunctions. The electrical characteristics of the proposed design were compared to those of a conventional thin film heterojunction design prepared by the same technique. A higher efficiency of 300% was achieved by the proposed design. This attempt can be considered as the first to fabricate solar cells from highly-pure nanopowders of two different semiconductors.
In this research we prepared nanofibers by electrospinning from
poly (Vinyl Alcohol) /TiO2. The spectrum of the solution (Emission)
was studied and found to be at 772 nm, several process parameters
were such as concentration of TiO2 , and the effect of distance from
nozzle tip to the grounded collector (gap distance). The result of the
lower concentration of, the smaller the diameter of nanofiber is.
Increasing the gap distance will affect nanofibers diameter
The aim of this study is to investigate the ability of malachite green (MG) combined with 650nm diode laser to kill Candida albicans and to spectrally study the MG photodegradation after photodynamic therapy (PDT) spectrally. Cultures of Candida albicans were exposed to 40mW, 650 nm diode laser in the absence of MG. In PDT group, the MG was added to the Candida suspension for 5 min then exposed to diode laser for (5, 10, 15, 20) min at power density of 0.59W/cm2. The absorption spectrum of the photosensitized fungal suspension was obtained. The data were submitted to T-test (p<0.05). A 650nm diode laser in the presence of MG reduced the number of CFU/ml in 98.4%. Laser with 650nm alone and MG alone did not reduce significantly the num
... Show MoreCopper nanoparticles (CuNPs) were prepared with different diameters by sonoelectrodeposition technique using Electrodeposition process coupled with high-power ultrasound horn (Sonoelectrodeposition). The particle diameter of the CuNPs was adjusted by varying CuSO4 solution acidity (pH) and current density. The morphology and structure of the CuNPs were examined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). It was found that the size of the produced copper nanoparticles ranged between 22 to 77 nm, where the diameter of CuNPs increases with reduction the solution acidity from 0.5 to 1.5 pH and increasing the current density of the deposition from 100 to 400 nm. Finally the produced CuNPs were pressed to fabricate disc
... Show MoreAdsorption experiments were carried out using two different low-cost sorbent materials, date seeds and olive seeds. These sorbents used as a single phase (not as mixture) to remove cadmium ions from simulated wastewater by adsorption process. The equilibrium time was found at 2 hr. The experiments include different parameters such sorbent type and weight and contact time. It was found that both of olive seed and date seed have approximately the same adsorption capacity (qm) with 15.644 mg/g and 15.2112 mg/g, respectively. Equilibrium isotherms and kinetic studies have been carried out. Langmuir isotherm model better fits the experimental data compared with the Freundlich isotherm for olive seed, while Freundlich isotherm fits for date se
... Show MoreThe objective of this study is to investigate the application of advanced oxidation processes (AOPs) in the treatment of wastewater contaminated with furfural. The AOPs investigated is the homogeneous photo-Fenton (UV/H2O2/Fe+2) process. The experiments were conducted by using cylindrical stainless steel batch photo-reactor. The influence of different variables: initial concentration of H2O2 (300-1300mg/L), Fe+2(20-70mg/L), pH(2-7) and initial concentration of furfural (50-300 mg/L) and their relationship with the mineralization efficiency were studied.
Complete mineralization for the system UV/H2O2/Fe+2 was achieved at: initi
... Show More