In this work we present a technique to extract the heart contours from noisy echocardiograph images. Our technique is based on improving the image before applying contours detection to reduce heavy noise and get better image quality. To perform that, we combine many pre-processing techniques (filtering, morphological operations, and contrast adjustment) to avoid unclear edges and enhance low contrast of echocardiograph images, after implementing these techniques we can get legible detection for heart boundaries and valves movement by traditional edge detection methods.
In this paper, a new tunable approach for fusion the satellite images that fall in different electromagnetic wave ranges is presented, which gives us the ability to make one of the images features little superior on the other without reducing the general resultant image fusion quality, this approach is based on the principal component analysis (PCA) fusion method. A comparison made is between the results of the proposed approach and two fusion methods (they are: the PCA fusion method and the projection of eigenvectors on the bands fusion method), and the comparison results show the validity of this new method.
Aims: This study was done to investigate the effect of low energy laser therapy on bone healing at the extraction site. Materials and methods:(24) male albino rats were exposed to the extraction procedure of the maxillary first molar on the first day of a seven day experiment and these animals were divided into two main groups; the control group and the laser group. The laser experiment involved using (Ga-As infrared diode laser) from optodent by directing the probe over the extraction site. The control group consisted of 4 rats, and the laser group was subdivided into 5 subgroups of 4 rats each. The laser dose was as follows: B1: a single dose of 5 minutes immediately after extraction.,
... Show MoreThe research material was prune plums (
The research material was prune plums (
Deep Learning Techniques For Skull Stripping of Brain MR Images
In this paper, a simple fast lossless image compression method is introduced for compressing medical images, it is based on integrates multiresolution coding along with polynomial approximation of linear based to decompose image signal followed by efficient coding. The test results indicate that the suggested method can lead to promising performance due to flexibility in overcoming the limitations or restrictions of the model order length and extra overhead information required compared to traditional predictive coding techniques.
Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by usin
... Show MoreBackground: One of the recommended methods for reducing aerosol contamination during the daily regular usage of high-speed turbine and ultrasonic scaling is the use of preprocedural mouth rinse. Several agents have been investigated as a preprocedural mouth rinse. Chlorhexidine significantly reduce the viable microbial content of aerosol when used as a preprocedural rinse. Studies have shown that cetylpridinum chloride (CPC) mouthwash is equally effective as chlorhexidine in reducing plaque and gingivitis. This study compared the effect of 0.07% CPC to 0.2% chlorhexidine gluconate (CHX) as preprocedural mouth rinses in reducing the aerosol contamination by high-speed turbine. Materials and Methods: 36 patients were divided into three gro
... Show More