This paper proposes a novel finite-time generalized proportional integral observer (FTGPIO) based a sliding mode control (SMC) scheme for the tracking control problem of high order uncertain systems subject to fast time-varying disturbances. For this purpose, the construction of the controller consists of two consecutive steps. First, the novel FTGPIO is designed to observe unmeasurable plant dynamics states and disturbance with its higher time derivatives in finite time rather than infinite time as in the standard GPIO. In the FTGPO estimator, the finite time convergence rate of estimations is well achieved, whereas the convergence rate of estimations by classical GPIO is asymptotic and slow. Secondly, on the basis of the finite and fast e
... Show MoreIn the present study, radon gas concentration in the shallow groundwater samples of the Abu-Jir region in Anbar governorate was measured by using Rad-7 detector. The highest radon gas level in the samples is up to 9.3 Bq/L, while the lowest level is 2.1 Bq/L, with an average of 6.44±1.8 Bq/L. The annual effective dose is varied from 33.945 μSv/y to 7.66 μSv/y, with an average of 0.145±0.06 μSv/y. Consequently, the radon level in the groundwater studied is lower than the standard recommended value (11 Bq/L) reported by the United States Environmental Protection Agency (USEPA). The potential source of radon is uranium-rich hydrocarbons that are leakage to the surface along the Abu-Jir Fault. This research did not indicate any ris
... Show MoreThe shortage in surface water quantities led to a shift in dependence on the groundwater as an alternative water source in southern parts of Iraq. The groundwater is decreasing in quantity and water quality is degrading due to different factors. Therefore, it is important to assess the groundwater quality of the Missan Governorate of the country by analyzing the physicochemical parameters and distinguishing the probable sources of contaminants in the area. The present study used water quality diagrams and statistical methods such as factor analysis and agglomerative cluster analysis to determine the sources of chemical ions in the forty-four groundwater samples collected from wells in the study area. In addition, the Water Quality Index (WQ
... Show MoreThis study thoroughly investigates the potential of niobium oxide (Nb2O5) thin films as UV-A photodetectors. The films were precisely fabricated using dc reactive magnetron sputtering on Si(100) and quartz substrates, maintaining a consistent power output of 50W while varying substrate temperatures. The dominant presence of hexagonal crystal structure Nb2O5 in the films was confirmed. An increased particle diameter at 150°C substrate temperature and a reduced Nb content at higher substrate temperatures were revealed. A distinct band gap with high UV sensitivity at 350 nm was determined. Remarkably, films sputtered using 50W displayed the highest photosensitivity at 514.89%. These outstanding optoelectronic properties highlight Nb2O5 thin f
... Show MoreObjective : To study the effect of some risk factors like age, smoking and Diabetes mellitus (DM) among patients with
certain cardiovascular diseases (Angina pectoris and Myocardial infarction), in addition to the assessment of the Creactive
protein (CRP) in the sera of those patients.
Methodology: The study was carried out on (100) subjects who were hospitalized in the Iraqi Center of heart Diseases
in Baghdad city and were suffering from Myocardial InfarcƟon (MI) (16) and Angina Pectoris (AP) (79) or from both (5)
over a period from September 2009 to June 2010. The results of paƟents were compared with those of (30) healthy
and age-matched individuals as a control group. Data were obtained from patients who were alr
In this work, multilayer nanostructures were prepared from two metal oxide thin films by dc reactive magnetron sputtering technique. These metal oxide were nickel oxide (NiO) and titanium dioxide (TiO2). The prepared nanostructures showed high structural purity as confirmed by the spectroscopic and structural characterization tests, mainly FTIR, XRD and EDX. This feature may be attributed to the fine control of operation parameters of dc reactive magnetron sputtering system as well as the preparation conditions using the same system. The nanostructures prepared in this work can be successfully used for the fabrication of nanodevices for photonics and optoelectronics requiring highly-pure nanomaterials.
In this work, metal oxide nanostructures, mainly copper oxide (CuO), nickel oxide (NiO), titanium dioxide (TiO2), and multilayer structure, were synthesized by the DC reactive magnetron sputtering technique. The effect of deposition time on the spectroscopic characteristics, as well as on the nanoparticle size, was determined. A long deposition time allows more metal atoms sputtered from the target to bond to oxygen atoms and form CuO, NiO, or TiO2 molecules deposited as thin films on glass substrates. The structural characteristics of the final samples showed high structural purity as no other compounds than CuO, NiO, and TiO2 were found in the final samples. Also, the prepared multilayer structures did not show new compounds other than th
... Show More