By March 2020, a pandemic had been emerged Corona Virus Infection in 2019 (COVID-19), which was triggered through the sensitive pulmonary syndrome (SARS disease corona virus- 2 (SARS COV-2). Overall precise path physiology of SARS COV-2 still unknown, as does the involvement of every element of the acute or adaptable immunity systems. Additionally, evidence from additional corona virus groups, including SARS COV as well as the Middle East pulmonary disease, besides that, fresh discoveries might help researchers fully comprehend SARS CoV-2. Toll-like receptors (TLRs) serve a critical part in both detection of viral particles as well as the stimulation of the body's immune response. When TLR systems are activated, pro-inflammatory cytokines like interleukin 1 (IL1), IL6, or nuclear factors, in addition to helpful interferon, are secreted. TLRs such as TLR2, TLR3, TLR4, TLR6, TLR7, TLR8, or TLR9 might possibly have a role in COVID-19 infections. It's also important noting that while dealing with COVID-19 infections, researchers should consider both the good or detrimental impacts of TLR. TLRs might be a focus for reducing infections inside the initial phases of the illness or developing a SARS CoV-2 vaccine.
The atomic properties have been studied for He-like ions (He atom, Li+, Be2+ and B3+ions). These properties included, the atomic form factor f(S), electron density at the nucleus , nuclear magnetic shielding constant and diamagnetic susceptibility ,which are very important in the study of physical properties of the atoms and ions. For these purpose two types of the wave functions applied are used, the Hartree-Fock (HF) waves function (uncorrelated) and the Configuration interaction (CI) wave function (correlated). All the results and the behaviors obtained in this work have been discussed, interpreted and compared with those previously obtained.
The aim of this paper, is to study different iteration algorithms types two steps called, modified SP, Ishikawa, Picard-S iteration and M-iteration, which is faster than of others by using like contraction mappings. On the other hand, the M-iteration is better than of modified SP, Ishikawa and Picard-S iterations. Also, we support our analytic proof with a numerical example.
This paper aims to identify the contents of the advertisements of the (Take the Vaccine .. to Protect Yourself) campaign that was carried out by the Iraqi Ministry of Health for the period from (11/19/2020) to (4/1/2022), to raise awareness of the anti-Covid 19 virus vaccines, which it published on its official page on Facebook. The researcher used a comprehensive inventory method for the research community, and used the content analysis tool.
... Show MoreRadial density distribution function of one particle D(r1) was calculated for main orbital of carbon atom and carbon like ions (N+ and B- ) by using the Partitioning technique .The results presented for K and L shells for the Carbon atom and negative ion of Boron and positive ion for nitrogen ion . We observed that as atomic number increases the probability of existence of electrons near the nucleus increases and the maximum of the location r1 decreases. In this research the Hartree-fock wavefunctions have been computed using Mathcad computer software .
During the course of fixed orthodontic therapy, patients should be instructed to eat specific food stuffs and beverages in order to maintain good health for the dentition and supporting structures and prevent frequent attachment debonding that prolong the treatment duration. After searching and collecting articles from 1930 till July 2021, the current review was prepared to emphasize various types of foods that should be taken during the course of fixed orthodontic therapy and to explain the effect of various food stuffs and beverages on the growth and development of craniofacial structures, tooth surfaces, root resorption, tooth movement, retention and stability after orthodontic treatment and the effect on the components of fixed ortho
... Show MoreMaximum values of one particle radial electronic density distribution has been calculated by using Hartree-Fock (HF)wave function with data published by[A. Sarsa et al. Atomic Data and Nuclear Data Tables 88 (2004) 163–202] for K and L shells for some Be-like ions. The Results confirm that there is a linear behavior restricted the increasing of maximum points of one particle radial electronic density distribution for K and L shells throughout some Be-like ions. This linear behavior can be described by using the nth term formula of arithmetic sequence, that can be used to calculate the maximum radial electronic density distribution for any ion within Be like ions for Z<20.
This paper aims to propose a hybrid approach of two powerful methods, namely the differential transform and finite difference methods, to obtain the solution of the coupled Whitham-Broer-Kaup-Like equations which arises in shallow-water wave theory. The capability of the method to such problems is verified by taking different parameters and initial conditions. The numerical simulations are depicted in 2D and 3D graphs. It is shown that the used approach returns accurate solutions for this type of problems in comparison with the analytic ones.