Globally, Sustainability is very quickly becoming a fundamental requirement of the construction industry as it delivers its projects; whether buildings or infrastructures. Throughout more than two decades, many modeling schemes, evaluation tools, and rating systems have been introduced en route to realizing sustainable construction. Many of these, however, lack consensus on evaluation criteria, a robust scientific model that captures the logic behind their sustainability performance evaluation, and therefore experience discrepancies between rated results and actual performance. Moreover, very few of the evaluation tools available satisfactorily address infrastructure projects. The research introduces a system engineering model that abstracts the environment, the construction product, and its production system as three interacting systems that exchange materials, energy, and information. The model utilizes this setup to capture and quantify essential flows exchanged between such three systems, to evaluate sustainability. The research walks through the development of a generic case of the model, and then demonstrates its utility in evaluating the sustainability performance of civil infrastructure projects. The developed model will address an identified gap within the current body of knowledge by considering infrastructure projects. Through the ability to simulate different scenarios, the model will enable identifying which activities, products, and processes impact the environment more, and hence potential areas for optimization and improvement.