The newly synthesized Schiff base ligand (E)-2-((2-phenylhydrazono)methyl)naphthalen-1-ol (phenyl hydrazine derivative), is allowed to react with each of the next mineral ion: Ni2+, Cu2+, Zn2+andCd2+successfully resulting to obtain new metal complexes with different geometric shape. The formation of Schiff base complexes and also the origin Schiff base is indicated using LC-Mass that manifest the obtained molar mass, FT-IR proved the occurrence of coordination through N of azobenzene and O of OH by observing the shifting in azomethines band and appearing of M-N and N-O bands. Moreover, we can also detect by such apparatus, the presence of aquatic water molecule inside the coordination sphere. UV-Vis spectra of all resultants revealed the creation of coordination by noticing the shifting in electronic transitions that happened in ligand at ultra violet region. TGA and DSC measurements for ligand and Ni-complex also prove the complexation and presence of coordinated water molecule inside the coordination sphere. In addition, molar accessibility and FAA results were closer to the counting results. The diagnoses return gave mononuclear complexes, bidentate dental behavior and tetrahedral geometry for all complexes. Depending on the antibiotic property of Schiff base and its complexes, we have tested such property on various types of microorganisms as detailed in the paper.
Bidentate Schiff base ligand 3-(3,4-Dihydroxy-phenyl)-2-[(4-dimethylamino-benzylidene)-amino]-2-methyl-propionic acid was prepared and characterized by spectroscopic techniques studies and elemental analysis. The Cd(II), Ni(II), Cu(II), Co(II), Cr(III),and Fe(III) of mixed-ligand complexes were structural explicate through Moler conductance , [FT-IR, UV-Vis & AAS], chloride contents, , and magnetic susceptibility measurements. Octahedral geometries have been suggested for all complexes. The Schiff base and its complexes were tested against various bacterial species, two of {gram(G+) and gram(G-)} were shown weak to good activity against all bacteria.
The new ligand [N1,N4-bis((1H-benzo[d]Glyoxalin-2-yl)carbamothioyl)Butanedi amide] (NCB) derived from Butanedioyl diisothiocyanate with 2-aminobenz imidazole was used to prepare a chain of new metal complexes of Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Pd(II), Ag(I), Cd(II) by general formula [M(NCB)]Xn ,Where M= Cr(III), n=3, X=Cl; Mn(II), Co(II), Ni(II), Cu(II), Pd(II), Cd(II) ,n=2 , X=Cl; Ag(I), n=1, X=NO3. Characterized compounds on the basis of 1H, 13CNMR (for (NCB), FT-IR and U.V spectrum, melting point, molar conduct, %C, %H, %N and %S, the percentage of the metal in complexes %M, Magnetic susceptibility, thermal studies (TGA),while its corrosion inhibition for mild steel in Ca(OH)2 solution is studied by weight loss. These measureme
... Show MoreThe phenyl hydrazine was react readily with acetic acid chloride in [1:2] ratio in alkyl of ethanolic solution, and refluxe for five hours to produce a new ligand of (N-Carboxymethyl-N-phenyl-hydrazino)-acetic acid [H2L].
A new set of metal complexes by the general formula [M(C)2(H2O)2]Cl2 has been prepared through the interaction of the new Ligand [N1, N4-bis(4-chlorophenyl)succinamide] (C) derived from succinyl chloride with 4-Chloroaniline with the transition metal ions Mn(II), Co(II), Ni(II), Hg(II), Cu(II) and Cd(II). Compounds diagnosed by TGA, 1 H, 13CNMR and Mass spectra (for (C)), Fourier-transform infrared and Electronic spectrum, Magnetic measurement, molar conduct, (%M, %C, %H, %N). These measurements indicate that (C) is associated with the metal ion in a bi-dentate fashion by nitrogen atoms (the amide group) and the octahedral composition of these complexes is suggested. The anti-bacterial action of the compounds towards three types of bacteria
... Show MoreCoupling reaction of 2-amino benzoic acid with phenol gave the new bidentate azo ligand. The prepared ligand was identified by Microelemental Analysis, FT-IR and UV-Vis spectroscopic technique. Treatment of the prepared ligand with the following metal ions (CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio and at optimum pH, yielded a series of neutral complexes of the general formula [M(L)2]. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT-IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. The nature of the complexes formed were studied following the mole ratio and continuous variation methods, Beer's law obeyed over a concentr
... Show MoreWe have synthesized many metal (II) complexes using curcumin L1 as the major ligand and 2-(1H-Benzimidazol-2-yl) aniline L2 as a supporting ligand. The complexes were characterized by spectroscopy methods such as; molar conductivity, elements microanalysis, Fourier-transform spectroscopy (FT-IR), UV-vis, and mass spectroscopy. Both curcumin ligands and L2 were found to be capable of binding to M(II) and metal ions via their two N atoms, according to the data. The formula for the complexes is the same. [M (L1)(L2)H2OCl], where M is Ni(II), Co(II), Cu(II), Cd(II), and Hg(II) (II). Octahedral complexes are proposed for the prepared compounds. The bio-actives suggested that the complexes are effective against bacteria and fungus on a mi
... Show MoreSalicylaldehyde was reacting with 2-amino benzoic acid to produce the Schiff base ligand benzoic acid 2-salicylidene (L). The prepared ligand was identified by Microelemental Analysis, FT.IR and UV-Vis spectroscopic techniques. A new complexes of Co(II),Ni(II),Cu(II) and Zn(II) with Schiff base was prepared in aqueous ethanol with a (1:1) M:L. The prepared complexes were characterized using flame atomic absorption, (C.H.N) Analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Biological activity of the ligand and complexes against three selected types of bacteria were also examined. Some of the complexes exhibit good bacterial activities. From the obtained data the tetrahedral str
... Show More