Variable selection in Poisson regression with high dimensional data has been widely used in recent years. we proposed in this paper using a penalty function that depends on a function named a penalty. An Atan estimator was compared with Lasso and adaptive lasso. A simulation and application show that an Atan estimator has the advantage in the estimation of coefficient and variables selection.
This article aims to explore the importance of estimating the a semiparametric regression function ,where we suggest a new estimator beside the other combined estimators and then we make a comparison among them by using simulation technique . Through the simulation results we find that the suggest estimator is the best with the first and second models ,wherealse for the third model we find Burman and Chaudhuri (B&C) is best.
In this article, we propose a Bayesian Adaptive bridge regression for ordinal model. We developed a new hierarchical model for ordinal regression in the Bayesian adaptive bridge. We consider a fully Bayesian approach that yields a new algorithm with tractable full conditional posteriors. All of the results in real data and simulation application indicate that our method is effective and performs very good compared to other methods. We can also observe that the estimator parameters in our proposed method, compared with other methods, are very close to the true parameter values.
Flexible pavements are considered an essential element of transportation infrastructure. So, evaluations of flexible pavement performance are necessary for the proper management of transportation infrastructure. Pavement condition index (PCI) and international roughness index (IRI) are common indices applied to evaluate pavement surface conditions. However, the pavement condition surveys to calculate PCI are costly and time-consuming as compared to IRI. This article focuses on developing regression models that predict PCI from IRI. Eighty-three flexible pavement sections, with section length equal to 250 m, were selected in Al-Diwaniyah, Iraq, to develop PCI-IRI relationships. In terms of the quantity and severity of eac
... Show MoreFor many problems in Physics and Computational Fluid Dynamics (CFD), providing an accurate approximation of derivatives is a challenging task. This paper presents a class of high order numerical schemes for approximating the first derivative. These approximations are derived based on solving a special system of equations with some unknown coefficients. The construction method provides numerous types of schemes with different orders of accuracy. The accuracy of each scheme is analyzed by using Fourier analysis, which illustrates the dispersion and dissipation of the scheme. The polynomial technique is used to verify the order of accuracy of the proposed schemes by obtaining the error terms. Dispersion and dissipation errors are calculated
... Show MoreThis paper proposed a new method to study functional non-parametric regression data analysis with conditional expectation in the case that the covariates are functional and the Principal Component Analysis was utilized to de-correlate the multivariate response variables. It utilized the formula of the Nadaraya Watson estimator (K-Nearest Neighbour (KNN)) for prediction with different types of the semi-metrics, (which are based on Second Derivative and Functional Principal Component Analysis (FPCA)) for measureing the closeness between curves. Root Mean Square Errors is used for the implementation of this model which is then compared to the independent response method. R program is used for analysing data. Then, when the cov
... Show MoreIn this paper simulation technique plays a vital role to compare between two approaches Maximum Likelihood method and Developed Least Square method to estimate the parameters of Frechet Poisson Lindley Distribution Compound. by coding using Matlab software program. Also, under different sample sizes via mean square error. As the results which obtain that Maximum Likelihood Estimation method is better than Developed Least Square method to estimate these parameters to the proposed distribution.
In this paper we introduce many different Methods of ridge regression to solve multicollinearity problem in linear regression model. These Methods include two types of ordinary ridge regression (ORR1), (ORR2) according to the choice of ridge parameter as well as generalized ridge regression (GRR). These methods were applied on a dataset suffers from a high degree of multicollinearity, then according to the criterion of mean square error (MSE) and coefficient of determination (R2) it was found that (GRR) method performs better than the other two methods.
Abstract
The logistic regression model is one of the nonlinear models that aims at obtaining highly efficient capabilities, It also the researcher an idea of the effect of the explanatory variable on the binary response variable. &nb
... Show MoreAudio security is an important aspect in various areas of communication. This paper deals with audio encryption as many of the data communication depends on audio data. In this paper, a new proposal of audio encryption system has been introduced. The system can be divided into two phases, the first phase focuses on generating a high-quality Pseudo Random Number generator (PRNGs) using elementary, periodic and hybrid rules of cellular automata (CA). The system suggests a new combination of CA rules in an endeavor to provide high randomness and to improve the strength of the proposed cryptosystem. Whereas the second phase produces the Enhanced Rivest Cipher 5 (ERC5) algorithm which employs the generated Random Number Sequence (RNS) i
... Show More