The drying process is considered an effective technique for preserving foods and agricultural products from spoilage. Moreover, the drying process lessens the products' weight, volume, and packaging, which prompts a reduction in the products' transportation costs. The drying technique with solar energy represents an ancient method, still alluring due to solar energy abundance and cost‐effectiveness. In this article, the previous manuscripts concerned with studying and analyzing indirect solar dryer systems that utilize innovative solar air heaters (SAHs) are reviewed. The results and conclusions are discussed intensively to clarify the significance of utilizing this type of drying technique. The effect of many parameters on the thermal performance and efficiency of the dryer systems has been investigated. The investigated parameters included the incident solar radiation, air flow rates, outlet solar air heater temperature, absorber plate material, moisture content of the agricultural products, and the shape and configuration of the SAH. Moreover, the manuscript outlines the drying rate mathematical models that were used to validate the experimental findings. Based on the review, it is found that solar dryer systems with modified SAHs designs rather than flat plate SAH have considerable effects on enhancing thermal performance and efficiency.
A numerical study of the double-diffusive laminar natural convection in a right triangular solar collector has been investigated in present work. The base (absorber) and glass cover of the collector are isothermal and isoconcentration surfaces, while the vertical wall is considered adiabatic and impermeable. Both aiding and opposing buoyancy forces have been studied. Governing equations in vorticity-stream function form are discretized via finite-difference method and are solved numerically by iterative successive under relaxation (SUR) technique. Computer code for MATLAB software has been developed and written to solve mathematical model. Results in the form of streamlines, isotherms, isoconcentration, average Nusselt, and average Sherw
... Show MoreIn this paper, a theoretical study was introduced to discussion the Influence of donor senstizer on efficiency of solar cell with clear focusing on dye senstized solar cell DSSCs applications was presented. Use of donor as -sensitizer dye in solar cells was a viable contender in photovoltaics due to their spectrum of excited state to transfer more elkectrons to conduction band of semiconductor .In this study, two systems Alq3/ZnO and D149/ZnO devices taken with same two solvents .Transtion energy ,coupling strength and transtion parameters are used to calculate the electron current density , it uses to calculate the photovoltic characteristic I-V ,fill factor and the efficiency of th
... Show MoreMost studies indicated that the values of atmospheric variables have changed from their general rates due to pollution or global warming etc. Hence, the research indicates the changes of direct solar radiation values over a whole century i.e. from 1900 to 2000 depending on registered data for four cities, namely (Mosul - Baghdad - Rutba - Basra. Moreover, attemptsto correlate the direct solar radiation with the temperature values have been recorded over that period. The results showed that there is a decreasing pattern of radiation quantities over time throughout the study period, where the value of direct radiation over the city of Baghdad 5550 w/m2 was recorded in the year 1900, but this ratio decreased cle
... Show MoreRecently, renewable energy (RE), such as solar energy, sources have proven their importance as an alternative source of fuel. The utilizing of solar energy can contribute to move the world towards relying on clean energy to curb global warming. However, the placement of solar farms is a major priority for planners as it is a critical factor in the succession energy project. This study combines one of the multi-criteria decision-making techniques Analytic Hierarchy Process (AHP) and Geographic Information System (GIS) to assess the suitability of land for establishing solar farms in Iraq. Numerous climatic, geomorphological, economic, and environmental criteria and some exclusionary constraints have been adopted in mode
... Show MoreThe performance of single and two stage solar concentrator were studied ' " The ratio of the primary to the secondary mirrors diameter is taking to be 0.5, depending on the theoretical calculation for the accumulated energy by the concentrator with ratio between 0.0 to 0.9. The design of the systems were designed and examined by using a ray-tracing program. The efficiency of the single and the two stage concentrators are calculated and compared with and without cooling systems.
Silicon nanowire arrays (SiNWs) are created utilizing the metal-assisted chemical etching method with an Ag metal as a catalyst and different etching time of 15, 30, and 60 minutes using n-Si (100). Physical properties such as structural, surface morphology, and optical properties of the prepared SiNWs are studied. The diameter of prepared SiNWs ranged from 20 to 280 nm, and the reflectance in the visible part of the wavelength spectrum was less than 1% for all prepared samples. The obtained energy gap of prepared SiNWs was around 2 eV, which is higher than the energy gap of bulk silicon. X-ray diffraction (XRD) has diffraction peaks at 68.70o for all prepared samples. The heterojunction solar cell was fabricated based on the
... Show MoreSilver Indium Aluminum Selenium AgIn1xAlxSe2 AIAS for x=01 thin films was deposited by thermal evaporation at RT and different︣︢︡ ︠︣1thickness 100 150 and 200 nm on the glass Substrate and p2Si wafer to produce AIAS/p3Si heterojunctionsolarcell4 Structural optical electrical and photovoltaicproperties6 are investigated for the samples XRD analysis reveals that all the deposited AIAS films show polycrystalline structure without any change due to increase of thickness Average diameter and roughness calculated from AFM images shows an increase in its value with increasing thickness The optical absorbance and transmittance for samples are measured using a spectrometer type UV Visible 1800 spectra1photometer to study the energy6gap The
... Show MoreThe n-type Au thin films of 500nm thickness was evaporated by thermal evaporation method on p-type silicon wafer of [111] direction to formed Au/Si heterojunction solar cell. The AC conductivity, C-V and I-V characteristics of fabricated c-Au/Si diffusion heterojunction-(HJ) solar cell, has been studied. The first methods demonstrated that the AC conductivity due to with diffusiontunneling mechanism, while the second show that, the heterojunction profile is abrupt, the heterojunction parameters have been played out, such as the depletion width, built-in voltage, and concentration. And finally the third one show that the c-Au/Si HJ has rectification properties, and the solar cell yielded an open circuit voltage of (Vic) 0.4V, short circuit c
... Show MoreAgInSe2 (AIS) thin films solar cell involving of n-type AgInSe2 and Si of p-type substrate by using thermal evaporation method. The influence of annealing of the preparation AgInSe2 were considered to find the best properties of solar device. Thin film AIS have been deposited under the vacuum of 1.5*10-6 Torr with (400) nm thickness at R.T and annealing temperatures (473,573) K. Polycrystalline tetragonal structure for AIS thin films from XRD and increasing of surface roughness from AFM, energy gap values decreasing with increasing annealing temperatures, all films were negative type, I-V characteristics show increasing of efficiency with increasing of annealing temperatures.