In this study, the response of ten composite post-tensioned concrete beams topped by a reinforced concrete deck with adequate reinforcing shear connectors is investigated. Depending on the concrete compressive strength of the deck slab (20, 30, and 40 MPa), beams are grouped into three categories. Seven of these beams are exposed to a fire attack of 700 and 800 °C temperature simultaneously with or without the presence of a uniformly distributed sustained static loading. After cooling back to ambient temperature, these composite beams are loaded up to failure, using a force control module, by monotonic static loading in a four-point-bending setup with two symmetrical concentrated loads applied in the middle third of the effective span. The objectives of this study include investigating the behavior of the composite prestressed concrete beams under and after the exposure to a direct fire flame, as well as finding their residual load-carrying capacity. Tests demonstrate significant deteriorations caused by exposure to high temperatures associated with the increase of the member’s camber. The increase of the midspan camber after heating exposure reached approximately 200%. On the other hand, the 1-h steady-state exposure of test specimens to temperatures of 700 and 800 °C led to reduce the load-carrying capacity of the heat-deteriorated beams up to 45% and 54%, respectively.
In order to save natural resources, recycling necessarily becomes a top priority for all of us, to save exhaustible resources, produce green energy and preserve the environment.
In this perspective, we are trying to valorize a waste of animal origin, largely neglected by the actors of materials, through an industrial transformation into a biological charge to make new sustainable bio-composite materials.
Using a tensile test bench, we try to mechanically characterize this biomaterial of renewable resources that, unlike eco-composites, has been neglected by the material actors.
Obtained from waste, with a high recycling potential and from renewable resources, the bio-charge to be analyzed will be injected, later in different poly
The present study focused mainly on the buckling behavior of composite laminated plates subjected to mechanical loads. Mechanical loads are analyzed by experimental analysis, analytical analysis (for laminates without cutouts) and numerical analysis by finite element method (for laminates with and without cutouts) for different type of loads which could be uniform or non-uniform, uniaxial or biaxial. In addition to many design parameters of the laminates such as aspect ratio, thickness ratio, and lamination angle or the parameters of the cutout such as shape, size, position, direction, and radii rounding) which are changed to studytheir effects on the buckling characteristics with various boundary conditions. Levy method of classical lam
... Show MoreIn this study, the stress-strength model R = P(Y < X < Z) is discussed as an important parts of reliability system by assuming that the random variables follow Invers Rayleigh Distribution. Some traditional estimation methods are used to estimate the parameters namely; Maximum Likelihood, Moment method, and Uniformly Minimum Variance Unbiased estimator and Shrinkage estimator using three types of shrinkage weight factors. As well as, Monte Carlo simulation are used to compare the estimation methods based on mean squared error criteria.
Proxy-based sliding mode control PSMC is an improved version of PID control that combines the features of PID and sliding mode control SMC with continuously dynamic behaviour. However, the stability of the control architecture maybe not well addressed. Consequently, this work is focused on modification of the original version of the proxy-based sliding mode control PSMC by adding an adaptive approximation compensator AAC term for vibration control of an Euler-Bernoulli beam. The role of the AAC term is to compensate for unmodelled dynamics and make the stability proof more easily. The stability of the proposed control algorithm is systematically proved using Lyapunov theory. Multi-modal equation of motion is derived using the Galerkin metho
... Show MoreThe rapid growth of cities and their inflation is a big problem, especially in the last years. this growth is accompanied by such problems like population growth, housing need, low level of services, random expansion, traffic congestion as well as pollution of the environment, which leads to a decline in the quality of life in Baghdad, the population are concentration in Baghdad therefore that leads to imbalance of development among cities and productive concentration for service projects in a mega cities, causing migration from other provinces In search of a better life. The main objective of the new cities is to relieve pressure on major cities and guide the growth of cities. Basmaya city it’s a new city project adopted f
... Show MoreWorldwide, enormous amounts of waste cause major environmental issues, including scrap tires and plastic, and large waste, a consequence of the demolition of buildings, including crushed concrete, crushed clay bricks, and crushed thermo-stone. From that point, it’s possible to consider that the recycling processes for these materials and using them in the manufacturing field will reduce the adverse effects on the environment of these wastes and the consumption of natural resources. Sustainable concrete blocks can be considered as one of the products produced by using these materials as partial volume replacement of the coarse, fine aggregate, or cement content, considering their dry density, workability, absorption, compressive st
... Show MoreWorldwide, enormous amounts of waste cause major environmental issues, including scrap tires and plastic, and large waste, a consequence of the demolition of buildings, including crushed concrete, crushed clay bricks, and crushed thermo-stone. From that point, it’s possible to consider that the recycling processes for these materials and using them in the manufacturing field will reduce the adverse effects on the environment of these wastes and the consumption of natural resources. Sustainable concrete blocks can be considered as one of the products produced by using these materials as partial volume replacement of the coarse, fine aggregate, or cement content, considering their dry density, workability, absorption, co
... Show More