The Dirichlet process is an important fundamental object in nonparametric Bayesian modelling, applied to a wide range of problems in machine learning, statistics, and bioinformatics, among other fields. This flexible stochastic process models rich data structures with unknown or evolving number of clusters. It is a valuable tool for encoding the true complexity of real-world data in computer models. Our results show that the Dirichlet process improves, both in distribution density and in signal-to-noise ratio, with larger sample size; achieves slow decay rate to its base distribution; has improved convergence and stability; and thrives with a Gaussian base distribution, which is much better than the Gamma distribution. The performance depends greatly on the choice of base distribution. The higher the value of α (a concentration parameter), the better the clustering and noise suppression. The distributional behavior of data can be approximated rigorously by the biorthogonal wavelet analysis. Since the Dirichlet process is an interesting object of observation, we computed it for a few wavelet bases and among them, we found that the Cohen-Daubechies-Feauveau (CDF) basis is the one that captures the Dirichlet process most accurately. Our results may be useful in applying the Dirichlet process to real-world experimental data and in developing Bayesian non-parametric methods.
The investor needs to a clear strategy for the purpose of access to the financial market, that is, has a plan to increase The share of the profits thinking entrepreneur and new, and highlights the importance of this in that it sets for the investor when it goes to the market, and when it comes out of it, and at what price to buy or sell the stock, and what is the the amount of money it starts. Fortunately, he does not need to invent his own investment strategy, because over the years the development of effective methods of buying and selling, and once you understand how to work these methods investor can choose the most appropriate methods and adapted image that fit his style investment .
&nb
... Show MoreThis research seeks through the adoption of two basic variables, where he considered the actuarial experience as an independent variable, while the process of accepting the risk and dimensions related to it is a dependent variable, the research was adopted to present the data achieved by the company during the life insurance business during the adoption of actuarial experience at the beginning of its work where Adoption of the historical method in the analysis of those data to prove the researcher's opinion, through the analysis of data (5 years) for the first period, which extends between (1975-1979), the period during which the company adopted the actuarial experience at the time, also taken data for the same dimensions related to the
... Show MoreSentiment analysis is one of the major fields in natural language processing whose main task is to extract sentiments, opinions, attitudes, and emotions from a subjective text. And for its importance in decision making and in people's trust with reviews on web sites, there are many academic researches to address sentiment analysis problems. Deep Learning (DL) is a powerful Machine Learning (ML) technique that has emerged with its ability of feature representation and differentiating data, leading to state-of-the-art prediction results. In recent years, DL has been widely used in sentiment analysis, however, there is scarce in its implementation in the Arabic language field. Most of the previous researches address other l
... Show MoreAnalyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col
... Show MoreThe radio drama is considered to be one of the arts that is discovered after a long period of theater's discovery. Initially , it was the broad framework of the theater's work when radio was broadcasting the shows on the huge theaters. This beginning encouraged many of the radio specialists to correlate plays with radio and make a novice and distinctive type of art. Thus, radio drama made its first step including the following ( plays, short and long series drama as well as other types of radio arts). Because of the above mentioned , the researcher is stimulating to study directing techniques to process the radio drama script ( Khata'a play as a sample).
The first chapter deals with the
... Show MoreHuman resources are considered as strategic fortune for being the main driver of the development wheel in the society, and the field of education and learning is one of the main pillars of this fortune for its great effect in the process of economic and social progress of individuals. I was the subject of education to the concerns of many countries, as adopted national policies . And regional support and the reduction of constraints, so came our study (education hub for human development) to identify the role of education in human development and to identify the obstacles facing the education process and the extent of its impacts negatively on the process of human development also contribute to the knowledge of school enrollment and the
... Show MoreStatistical learning theory serves as the foundational bedrock of Machine learning (ML), which in turn represents the backbone of artificial intelligence, ushering in innovative solutions for real-world challenges. Its origins can be linked to the point where statistics and the field of computing meet, evolving into a distinct scientific discipline. Machine learning can be distinguished by its fundamental branches, encompassing supervised learning, unsupervised learning, semi-supervised learning, and reinforcement learning. Within this tapestry, supervised learning takes center stage, divided in two fundamental forms: classification and regression. Regression is tailored for continuous outcomes, while classification specializes in c
... Show MoreThe interplay of species in a polluted environment is one of the most critical aspects of the ecosystem. This paper explores the dynamics of the two-species Lokta–Volterra competition model. According to the type I functional response, one species is affected by environmental pollution. Whilst the other degrades the toxin according to the type II functional response. All equilibrium points of the system are located, with their local and global stability being assessed. A numerical simulation examination is carried out to confirm the theoretical results. These results illustrate that competition and pollution can significantly change the coexistence and extinction of each species.
Need organizations today to move towards strategic thinking which means analyzing situations faced by particular challenges of change in the external environment, which makes it imperative for The Organization That to reconsider their strategies and orientations and operations, a so-called re-engineering to meet those challenges and pressures, to try to achieve improvement root in the installation of the organization and methodscompletion of its work towards achieving high levels of performance and that is reflected to achieve its objectives, and this is what aims to Current search to deal with implications characteristics of strategic thinking in the stages of application re-engineering business of the company General Industries
... Show More