The Dirichlet process is an important fundamental object in nonparametric Bayesian modelling, applied to a wide range of problems in machine learning, statistics, and bioinformatics, among other fields. This flexible stochastic process models rich data structures with unknown or evolving number of clusters. It is a valuable tool for encoding the true complexity of real-world data in computer models. Our results show that the Dirichlet process improves, both in distribution density and in signal-to-noise ratio, with larger sample size; achieves slow decay rate to its base distribution; has improved convergence and stability; and thrives with a Gaussian base distribution, which is much better than the Gamma distribution. The performance depends greatly on the choice of base distribution. The higher the value of α (a concentration parameter), the better the clustering and noise suppression. The distributional behavior of data can be approximated rigorously by the biorthogonal wavelet analysis. Since the Dirichlet process is an interesting object of observation, we computed it for a few wavelet bases and among them, we found that the Cohen-Daubechies-Feauveau (CDF) basis is the one that captures the Dirichlet process most accurately. Our results may be useful in applying the Dirichlet process to real-world experimental data and in developing Bayesian non-parametric methods.
The auditory system can suffer from exposure to loud noise and human health can be affected. Traffic noise is a primary contributor to noise pollution. To measure the noise levels, 3 variables were examined at 25 locations. It was found that the main factors that determine the increase in noise level are traffic volume, vehicle speed, and road functional class. The data have been taken during three different periods per day so that they represent and cover the traffic noise of the city during heavy traffic flow conditions. Analysis of traffic noise prediction was conducted using a simple linear regression model to accurately predict the equivalent continuous sound level. The difference between the predicted and the measured noise shows that
... Show MoreThe effect of solution heat treatment on the mechanical properties of Aluminum-Copper alloy. (2024-T3) by the rolling process is investigated. The solution heat treatment was implemented by heating the sheets to 480 C° and quenching them by water; then forming by rolling for many passes. And then natural aging is done for one month. Mechanical properties (tensile strength and hardness) are evaluated and the results are compared with the metal without treatment during the rolling process. ANSYS analysis is used to show the stresses distribution in the sheet during the rolling process. It has been seen that good mechanical properties are evident in the alloy without heat treatment due to the strain hardening and also the mechanical
... Show MoreThis Book is intended to be a textbook studied for undergraduate course in financial statistics/ department of Financial Sciences and Banking. This book is designed to be used in semester system. To achieve the goals of the book, it is divided into the following chapters. Chapter one introduces basic concepts. Chapter two devotes to frequency distribution and data representation. Chapter three discusses central tendency measures (all types of means, mode, and median). Chapter four deals with dispersion Measures (standard deviation, variance, and coefficient of variation). Chapter five concerned with correlation and regression analysis. While chapter six concerned with testing Hypotheses (One population mean test, Two "independent" populati
... Show MoreThis paper investigates a new approach to the rapid control of an upper limb exoskeleton actuator. We used a mathematical model and motion measurements of a human arm to estimate joint torque as a means to control the exoskeleton’s actuator. The proposed arm model is based on a two-pendulum configuration and is used to obtain instantaneous joint torques which are then passed into control law to regulate the actuator torque. Nine subjects volunteered to take part in the experimental protocol, in which inertial measurement units (IMUs) and a digital goniometer were used to measure and estimate the torque profiles. To validate the control law, a Simscape model was developed to simulate the arm model and control law in which measurem
... Show MoreBackground: Oral pyogenic granuloma (PG) is a clinicopathological entity that could develop due to the reaction to a variety of stimuli, such as low-grade local irritation, traumatic damage, and hormonal stimulation. There are two histopathological types of pyogenic granuloma; lobular type -capillary hemangioma (LCH) and non-lobular type; with PG,LCH has highly vascular, diffuse capillary growth while non- lobular variant mimicking granulation tissue with heavily inflammated stroma. The study aims were to review the clinical and histopathological spectrum of an oral pyogenic granuloma from different intraoral sites in order to avoid diagnostic pitfalls associated with similar morphological lesions and to determine
... Show MoreFree Space Optics (FSO) plays a vital role in modern wireless communications due to its advantages over fiber optics and RF techniques where a transmission of huge bandwidth and access to remote places become possible. The specific aim of this research is to analyze the Bit-Error Rate (BER) for FSO communication system when the signal is sent the over medium of turbulence channel, where the fading channel is described by the Gamma-Gamma model. The signal quality is improved by using Optical Space-Time Block- Code (OSTBC) and then the BER will be reduced. Optical 2×2 Alamouti scheme required 14 dB bit energy to noise ratio (Eb/N0) at 10-5 bit error rate (BER) which gives 3.5 dB gain as compared to no diversity scheme. Th
... Show MoreIn the present work, pattern recognition is carried out by the contrast and relative variance of clouds. The K-mean clustering process is then applied to classify the cloud type; also, texture analysis being adopted to extract the textural features and using them in cloud classification process. The test image used in the classification process is the Meteosat-7 image for the D3 region.The K-mean method is adopted as an unsupervised classification. This method depends on the initial chosen seeds of cluster. Since, the initial seeds are chosen randomly, the user supply a set of means, or cluster centers in the n-dimensional space.The K-mean cluster has been applied on two bands (IR2 band) and (water vapour band).The textural analysis is used
... Show More