Preferred Language
Articles
/
RBbbtIcBVTCNdQwCI10n
Numerical solution of the two-dimensional Helmholtz equation with variable coefficients by the radial integration boundary integral and integro-differential equation methods

Crossref
View Publication
Publication Date
Mon Nov 01 2021
Journal Name
Proceedings Of First International Conference On Mathematical Modeling And Computational Science: Icmmcs 2020
Study the Stability for Ordinary Differential Equations Using New Techniques via Numerical Methods

Nonlinear differential equation stability is a very important feature of applied mathematics, as it has a wide variety of applications in both practical and physical life problems. The major object of the manuscript is to discuss and apply several techniques using modify the Krasovskii's method and the modify variable gradient method which are used to check the stability for some kinds of linear or nonlinear differential equations. Lyapunov function is constructed using the variable gradient method and Krasovskii’s method to estimate the stability of nonlinear systems. If the function of Lyapunov is positive, it implies that the nonlinear system is asymptotically stable. For the nonlinear systems, stability is still difficult even though

... Show More
Scopus (8)
Scopus
Publication Date
Thu Feb 29 2024
Journal Name
Iraqi Journal Of Science
Finding the Exact Solution of Kepler’s Equation for an Elliptical Satellite Orbit Using the First Kind Bessel Function

     In this study, the first kind Bessel function was used to solve Kepler equation for an elliptical orbiting satellite. It is a classical method that gives a direct solution for calculation of the eccentric anomaly. It was solved for one period from (M=0-360)° with an eccentricity of (e=0-1) and the number of terms from (N=1-10). Also, the error in the representation of the first kind Bessel function was calculated. The results indicated that for eccentricity of (0.1-0.4) and (N = 1-10), the values of eccentric anomaly gave a good result as compared with the exact solution. Besides, the obtained eccentric anomaly values were unaffected by increasing the number of terms (N = 6-10) for eccentricities (0.8 and 0.9). The Bessel

... Show More
View Publication
Crossref (1)
Scopus Crossref
Publication Date
Wed Dec 01 2010
Journal Name
Iraqi Journal Of Physics
Study of electron energy distribution function and transport parameters for CF4, Ar gases mixture discharge by using the solution of Boltzmann equation-Part II

The Boltzmann transport equation is solved by using two- terms approximation for pure gases and mixtures. This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
The electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Also, the mixtures are have different energy values depending on transport energy between electron and molecule through the collisions. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride i

... Show More
View Publication Preview PDF
Publication Date
Sun Jul 01 2012
Journal Name
Baghdad University College Of Education Ibn Al-haitham
Numerical Solution of Linear System of Fredholm Integral Equations Using Haar Wavelet Method

The aim of this paper is to present the numerical method for solving linear system of Fredholm integral equations, based on the Haar wavelet approach. Many test problems, for which the exact solution is known, are considered. Compare the results of suggested method with the results of another method (Trapezoidal method). Algorithm and program is written by Matlab vergion 7.

View Publication
Publication Date
Mon Apr 24 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Modified Iterative Solution of Nonlinear Uniformly Continuous Mappings Equation in Arbitrary Real Banach Space

 In this paper, we study the convergence theorems of the Modified Ishikawa iterative sequence with mixed errors for the uniformly continuous mappings and solving nonlinear uniformly continuous mappings equation in arbitrary real Banach space.

View Publication Preview PDF
Publication Date
Tue Mar 30 2021
Journal Name
Baghdad Science Journal
Solving Fractional Damped Burgers' Equation Approximately by Using The Sumudu Transform (ST) Method

       In this work, the fractional damped Burger's equation (FDBE) formula    = 0,

View Publication Preview PDF
Scopus (6)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability: Tmrees22fr
Investigate the structural properties of Tl1-xHgxSr2Ca2Cu3O8+δ compound by using Scherrer modified equation

View Publication
Scopus (2)
Crossref (1)
Scopus Crossref
Publication Date
Thu May 30 2024
Journal Name
Journal Of Interdisciplinary Mathematics
Analytical approximate solutions of random integro differential equations with laplace decomposition method

An efficient combination of Adomian Decomposition iterative technique coupled with Laplace transformation to solve non-linear Random Integro differential equation (NRIDE) is introduced in a novel way to get an accurate analytical solution. This technique is an elegant combination of theLaplace transform, and the Adomian polynomial. The suggested method will convert differential equations into iterative algebraic equations, thus reducing processing and analytical work. The technique solves the problem of calculating the Adomian polynomials. The method’s efficiency was investigated using some numerical instances, and the findings demonstrate that it is easier to use than many other numerical procedures. It has also been established that (LT

... Show More
Scopus
Publication Date
Sun Dec 07 2014
Journal Name
Baghdad Science Journal
Oscillations of First Order Neutral Differential Equations with Positive and Negative Coefficients

Oscillation criterion is investigated for all solutions of the first-order linear neutral differential equations with positive and negative coefficients. Some sufficient conditions are established so that every solution of eq.(1.1) oscillate. Generalizing of some results in [4] and [5] are given. Examples are given to illustrated our main results.

View Publication Preview PDF
Crossref
Publication Date
Tue Jan 28 2020
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Forecasting the performance and profitability of companies using the equation of Tobin’sq

The main objective and primary concern to every investor not only to achieve a greater return on his or her investments, but also to create the largest possible value of these investments the, researchers and those interested in the field of investment and financial analysis  try to develop standards  for performance      valuation      is guided through the                                     &nbsp

... Show More
View Publication Preview PDF