The main objective and primary concern to every investor not only to achieve a greater return on his or her investments, but also to create the largest possible value of these investments the, researchers and those interested in the field of investment and financial analysis try to develop standards for performance valuation is guided through the  
... Show MoreOscillation criterion is investigated for all solutions of the first-order linear neutral differential equations with positive and negative coefficients. Some sufficient conditions are established so that every solution of eq.(1.1) oscillate. Generalizing of some results in [4] and [5] are given. Examples are given to illustrated our main results.
In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the dimension of the null space is equal to two. The nonlinear Ritz approximation for the nonhomogeneous Camassa-Holm equation has been found as a function of codimension twenty-four.
In this paper, the Reliability Analysis with utilizing a Monte Carlo simulation (MCS) process was conducted on the equation of the collapse potential predicted by ANN to study its reliability when utilized in a situation of soil that has uncertainty in its properties. The prediction equation utilized in this study was developed previously by the authors. The probabilities of failure were then plotted against a range of uncertainties expressed in terms of coefficient of variation. As a result of reliability analysis, it was found that the collapse potential equation showed a high degree of reliability in case of uncertainty in gypseous sandy soil properties within the specified coefficient of variation (COV) for each property. When t
... Show MoreWe present a reliable algorithm for solving, homogeneous or inhomogeneous, nonlinear ordinary delay differential equations with initial conditions. The form of the solution is calculated as a series with easily computable components. Four examples are considered for the numerical illustrations of this method. The results reveal that the semi analytic iterative method (SAIM) is very effective, simple and very close to the exact solution demonstrate reliability and efficiency of this method for such problems.
The research aims to find approximate solutions for two dimensions Fredholm linear integral equation. Using the two-variables of the Bernstein polynomials we find a solution to the approximate linear integral equation of the type two dimensions. Two examples have been discussed in detail.
Oscillation criteria are obtained for all solutions of the first-order linear delay differential equations with positive and negative coefficients where we established some sufficient conditions so that every solution of (1.1) oscillate. This paper generalized the results in [11]. Some examples are considered to illustrate our main results.