This paper investigates the recovery for time-dependent coefficient and free boundary for heat equation. They are considered under mass/energy specification and Stefan conditions. The main issue with this problem is that the solution is unstable and sensitive to small contamination of noise in the input data. The Crank-Nicolson finite difference method (FDM) is utilized to solve the direct problem, whilst the inverse problem is viewed as a nonlinear optimization problem. The latter problem is solved numerically using the routine optimization toolbox lsqnonlin from MATLAB. Consequently, the Tikhonov regularization method is used in order to gain stable solutions. The results were compared with their exact solution and tested via
... Show MoreThis paper deals with numerical approximations of a one-dimensional semilinear parabolic equation with a gradient term. Firstly, we derive the semidiscrete problem of the considered problem and discuss its convergence and blow-up properties. Secondly, we propose both Euler explicit and implicit finite differences methods with a non-fixed time-stepping procedure to estimate the numerical blow-up time of the considered problem. Finally, two numerical experiments are given to illustrate the efficiency, accuracy, and numerical order of convergence of the proposed schemes.
An approximate solution of the liner system of ntegral cquations fot both fredholm(SFIEs)and Volterra(SIES)types has been derived using taylor series expansion.The solusion is essentailly
The purpose of this research paper is to present the second-order homogeneous complex differential equation , where , which is defined on the certain complex domain depends on solution behavior. In order to demonstrate the relationship between the solution of the second-order of the complex differential equation and its coefficient of function, by studying the solution in certain cases: a meromorphic function, a coefficient of function, and if the solution is considered to be a transformation with another complex solution. In addition, the solution has been provided as a power series with some applications.
An evaluation was achieved by designing a matlab program to solve Kepler’s equation of an elliptical orbit for methods (Newton-Raphson, Danby, Halley and Mikkola). This involves calculating the Eccentric anomaly (E) from mean anomaly (M=0°-360°) for each step and for different values of eccentricities (e=0.1, 0.3, 0.5, 0.7 and 0.9). The results of E were demonstrated that Newton’s- Raphson Danby’s, Halley’s can be used for e between (0-1). Mikkola’s method can be used for e between (0-0.6).The term that added to Danby’s method to obtain the solution of Kepler’s equation is not influence too much on the value of E. The most appropriate initial Gauss value was also determined to
... Show MoreIn this paper, some conditions to guarantee the existence of bounded solution to the second order multi delayed arguments differential equation are given. The Krasnoselskii theorem used to the Lebesgue’s dominated convergence and fixed point to obtain some new sufficient conditions for existence of solutions. Some important lemmas are established that are useful to prove the main results for oscillatory property. We also submitted some sufficient conditions to ensure the oscillation criteria of bounded solutions to the same equation.
The approximate solution of a nonlinear parabolic boundary value problem with variable coefficients (NLPBVPVC) is found by using mixed Galekin finite element method (GFEM) in space variable with Crank Nicolson (C-N) scheme in time variable. The problem is reduced to solve a Galerkin nonlinear algebraic system (NLAS), which is solved by applying the predictor and the corrector method (PCM), which transforms the NLAS into a Galerkin linear algebraic system (LAS). This LAS is solved once using the Cholesky technique (CHT) as it appears in the MATLAB package and once again using the General Cholesky Reduction Order Technique (GCHROT), the GCHROT is employed here at first time to play an important role for saving a massive time. Illustrative
... Show More