The construction of embankment for roadway interchange system at urban area is restricted due to the large geometry requirements, since the value of land required for such construction is high, and the area available is limited as compared to rural area. One of the optimum solutions to such problem is the earth reinforcement technique which requires a limited area for embankment construction. Gypseous soil from Al-Anbar governorate area was obtained and subjected to various physical and chemical analysis to determine it is properties. A laboratory model box of 50x50x25 cm was used as a representative embankment; soil has been compacted in five layers at maximum dry density (modified compaction) and an aluminum reinforcement strips were introduced between layers. The model was subjected to cyclic loading and the vertical and lateral deformations were detected at different stages of loading cycles using LVDT. The reinforced soil embankment under soaking condition exhibited vertical settlement at the top surface was (12.55 mm) while the lateral displacements at (1st, 3rd layer) were (2.18, 1.32) mm respectively at (47 load cycles).For reinforced gypseous soil, embankment without soaking cured for 24 hours, the Number of load cycles was found to be (165) loading cycles with vertical displacement (9.12 mm), that means an improvement of 59%. Accordingly, the lateral displacement in 1st and 3rd layers were (3.28, 2.59) mm respectively which observes improvement by (28% and 5%) respectively. The rates of improvement are taken with respect to the reinforced pure dry soil sample.
This paper experimentally investigated the dynamic buckling behavior of AISI 303 stainless steel aluminized and as received intermediate columns. Twenty seven specimens without aluminizing (type 1) and 75 specimens with hot-dip aluminizing at different aluminizing conditions of dipping temperature and dipping time (type 2), were tested under dynamic compression loading (compression and torsion), dynamic bending loading (bending and torsion), and under dynamic combined loading (compression, bending, and torsion) by using a rotating buckling test machine. The experimental results werecompared with tangent modulus theory, reduced modulus theory, and Perry Robertson interaction formula. Reduced modulus was formulated to circular cross-
... Show MoreThe best design of subsurface trickle irrigation systems requires knowledge of water and salt distribution patterns around the emitters that match the root extraction and minimize water losses. The transient distribution of water and salt in a two-dimensional homogeneous Iraqi soil domain under subsurface trickle irrigation with different settings of an emitter is investigated numerically using 2D-HYDRUS software. Three types of Iraqi soil were selected. The effect of altering different values of water application rate and initial soil water content was investigated in the developed model. The coefficient of correlation (R2) and the root-mean-square error (RMSE) was used to validate the predicted numerical res
... Show MoreFor design purposes, it`s necessary to know the compression rate of soil layers which might be happened when it`s subjected to effective stresses. Also, it`s essential to know the rate of flow through soil mass specially for the design of marine structures or earth embankment. These two important behavior could be predicted from the coefficient of consolidation (Cv) and the coefficient of permeability (k). This study shows the effect of cutback asphalt stabilization on Cv and k and other compressibility factors, the investigation was done for silty clay samples, specimens were prepared by mixing the soil with different percentage of asphalt from (0-10)% and subjected to one-dimensional consolidation test of 50mm diameter and 20mm height wer
... Show MoreRecently, a great rise in the population and fast manufacturing processes were noticed. These processes release significant magnitudes of waste. These wastes occupied a notable ground region, generating big issues for the earth and the environment. To enhance the geotechnical properties of fine-grained soil, a sequence of research projects in the lab were conducted to analyze the impacts of adding sludge waste (SW). The tests were done on both natural and mixed soil with SW at various proportions (2%, 4%, 6%, 8%, and 10%) based on the dry mass of the soil used. The experiments conducted focused on consistency, compaction, and shear strength. With the addition of 10% of SW, the values of LL and PI decreased by 29.7% and 3
... Show MoreSoil fertility is a crucial factor in measuring soil quality, it indicates the extent to which soil can support plant life. Soil fertility is measured by the amount of macro and micronutrients, pH, etc. Soil nutrients are depleted after each harvest and therefore must be added. To maintain soil nutrient levels, fertilizer is added to the soil. Adding fertilizer in the precise amount is a matter of great importance because excess or insufficient application can harm plant life and reduce productivity. The use of modern technology is a solution to this problem. Although automated techniques for sowing, weeding, crop harvesting, etc. have been proposed and implemented, none of the techniques are aimed to maintaining soil fertility. The study a
... Show MoreA high settlement may take place in shallow footing when resting on liquefiable soil if subjected to earthquake loading. In this study, a series of shaking table tests were carried out for shallow footing resting on sand soil. The input motion is three earthquake loadings (0.05g, 0.1g, and 0.2g). The study includes a reviewing of theoretical equations (available in literatures), which estimating settlement of footings due to earthquake loading, calibration, and verification of these equations with data from the shaking table test for improved soil by grouting and unimproved soil. It is worthy to note that the grouting materials considered in this study are the Bentonite and CKD slurries. A modification to the seismic set
... Show MoreExpansive soils are recognized by their swelling potential upon wetting due to the existence of some clay minerals such as montmorillonite. An effective solution was found to avoid the danger of such soils by using piles. A single pile embedded in an elasto-plastic expansive soil has been analyzed by using one of the available software which is ABAQUS to investigate the effect of applied loads on pile’s top and investigate the effect of swelling soils on load carrying capacity of the pile. The result shows that as the pile is axially loaded at its top, the axial force along the pile gradually changes from (tension) to (compression) and the pile tends to move downward. The applied load needed to initiate pile’s settlement depend
... Show More