The construction of embankment for roadway interchange system at urban area is restricted due to the large geometry requirements, since the value of land required for such construction is high, and the area available is limited as compared to rural area. One of the optimum solutions to such problem is the earth reinforcement technique which requires a limited area for embankment construction. Gypseous soil from Al-Anbar governorate area was obtained and subjected to various physical and chemical analysis to determine it is properties. A laboratory model box of 50x50x25 cm was used as a representative embankment; soil has been compacted in five layers at maximum dry density (modified compaction) and an aluminum reinforcement strips were introduced between layers. The model was subjected to cyclic loading and the vertical and lateral deformations were detected at different stages of loading cycles using LVDT. The reinforced soil embankment under soaking condition exhibited vertical settlement at the top surface was (12.55 mm) while the lateral displacements at (1st, 3rd layer) were (2.18, 1.32) mm respectively at (47 load cycles).For reinforced gypseous soil, embankment without soaking cured for 24 hours, the Number of load cycles was found to be (165) loading cycles with vertical displacement (9.12 mm), that means an improvement of 59%. Accordingly, the lateral displacement in 1st and 3rd layers were (3.28, 2.59) mm respectively which observes improvement by (28% and 5%) respectively. The rates of improvement are taken with respect to the reinforced pure dry soil sample.
Glass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load. The in
... Show MoreGlass Fiber Reinforced Polymer (GFRP) beams have gained attention due to their promising mechanical properties and potential for structural applications. Combining GFRP core and encasing materials creates a composite beam with superior mechanical properties. This paper describes the testing encased GFRP beams as composite Reinforced Concrete (RC) beams under low-velocity impact load. Theoretical analysis was used with practical results to simulate the tested beams' behavior and predict the generated energies during the impact loading. The impact response was investigated using repeated drops of 42.5 kg falling mass from various heights. An analysis was performed using accelerometer readings to calculate the generalized inertial load
... Show MoreThe planning, designing, construction of excavations and foundations in soft to very soft clay soils are always difficult. They are problematic soil that caused trouble for the structures built on them because of the low shear strength, high water content, and high compressibility. This work investigates the geotechnical behavior of soft clay by using tyre ash material burnt in air. The investigation contains the following tests: physical tests, chemical tests, consolidation test, Compaction tests, shear test, California Bearing Ratio test CBR, and model tests. These tests were done on soil samples prepared from soft clay soil; tyre ash was used in four percentages (2, 4, 6, and 8%). The results of the tests were; The soil samples which
... Show MoreA simple technique is proposed in this paper for estimating the coefficient of permeability of an unsaturated soil based on physical properties of soils that include grain size analysis, degree of saturation or water content, and porosity of the soil. The proposed method requires the soil-water characteristic curve for the prediction of the coefficient of permeability as most of the conventional methods. A procedure is proposed to define the hydraulic conductivity function from the soil water characteristic curve which is measured by the filter paper method. Fitting methods are applied through the program (SoilVision), after indentifying the basic properties of the soil such as Attereberg limits, specific gravity, void ratio, porosity, d
... Show MoreIn the present research a new test rig has been proposed to be suitable for different cyclic loads such as cyclic bending, cyclic torsion, proportional and non proportional loads. In this work the efforts were concentrated on the cyclic bending loads concerning cracked pipes with or without internal pulsing pressure to study crack propagation in small bore pipes (up to 1'') for transverse or inclined cracks. The rig simulates the real service conditions under different stresses by means the least dangerous case will be suggested, so the experiments were considered for copper pipe, and the results have been tabulated and drawn to demonstrate the crack growth behavior as well as to justify the outcomes practically, consequently the durabil
... Show MoreThis Investigation aims to study the effect of adding Steel fibers with different volume fractions Vf (o.5, 0.75, and 1% by volume of concrete) with aspect ratio 100 on mechanical properties of concrete, and also
finding the influence of petroleum products (Kerosene and Diesel) on mechanical properties of Steel Fiber Reinforced Concrete (SFRC).
The experimental work consists of two groups: group one consists of specimens (cubes and prisms) plain and concrete reinforced with steel fiber exposed to continuous curing with water. Group two consists of
specimens (cubes and prisms) plain and concrete reinforced with steel fiber exposed to kerosene and diesel after curing them in water for 28 days before exposure. The results of all te