Preferred Language
Articles
/
RBbQHYcBVTCNdQwChTgj
Behavior of Reinforced Gypseous Soil Embankment Model under Cyclic Loading
...Show More Authors

The construction of embankment for roadway interchange system at urban area is restricted due to the large geometry requirements, since the value of land required for such construction is high, and the area available is limited as compared to rural area. One of the optimum solutions to such problem is the earth reinforcement technique which requires a limited area for embankment construction. Gypseous soil from Al-Anbar governorate area was obtained and subjected to various physical and chemical analysis to determine it is properties. A laboratory model box of 50x50x25 cm was used as a representative embankment; soil has been compacted in five layers at maximum dry density (modified compaction) and an aluminum reinforcement strips were introduced between layers. The model was subjected to cyclic loading and the vertical and lateral deformations were detected at different stages of loading cycles using LVDT. The reinforced soil embankment under soaking condition exhibited vertical settlement at the top surface was (12.55 mm) while the lateral displacements at (1st, 3rd layer) were (2.18, 1.32) mm respectively at (47 load cycles).For reinforced gypseous soil, embankment without soaking cured for 24 hours, the Number of load cycles was found to be (165) loading cycles with vertical displacement (9.12 mm), that means an improvement of 59%. Accordingly, the lateral displacement in 1st and 3rd layers were (3.28, 2.59) mm respectively which observes improvement by (28% and 5%) respectively. The rates of improvement are taken with respect to the reinforced pure dry soil sample.

Publication Date
Wed Oct 09 2019
Journal Name
Engineering, Technology & Applied Science Research
Serviceability of Reinforced Concrete Gable Roof Beams with Openings under Static Loads
...Show More Authors

This paper presents an analytical study on the serviceability of reinforced concrete gable roof beams with openings of different sizes, based on an experimental study which includes 13 concrete gable roof beams with openings under static loading. For deflection and crack widths under static loading at service stage, a developed unified calculation procedure has been submitted, which includes prismatic beams with one opening subjected to flexure concentrated force. The deflection has been calculated with two methods: the first method calculated deflections via relevant equations and the second was Direct Stiffness Method in which the beam is treated as a structural member with several segments constituting the portions with solid sec

... Show More
View Publication Preview PDF
Crossref (15)
Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Corrosion Behavior of Nanocomposite Al-9 wt% Si Alloy Reinforced with Carbon Nanotubes
...Show More Authors

An effort is made to study the effect of composite nanocoating using aluminum-9%wt silicon alloys reinforced with different percentage (0.5,1,2,4)wt.% of carbon nanotubes (CNTs) using  plasma spraying. The effect of this composite on corrosion behavior for AA6061-T6 by extrapolation Tafel test in sea water 3.5wt% NaCl was invested. Many specimens where prepared from AA6061-T6 by the dimension (15x15x3)mm as this first set up and other steps include coating process, X-ray diffraction and SEM examination .The results show the CNTs increase the corrosion rate of the nanocomposite coatings with increasing the weight percentage of CNTs within the Al-Si matrix. Al-9wt%Si coating layer itself has less corrosion rate if compared with both n

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sun Oct 02 2022
Journal Name
Engineering, Technology & Applied Science Research
Static and Dynamic Behavior of Circularized Reinforced Concrete Columns Strengthened with Hybrid CFRP
...Show More Authors

In this study, three strengthening techniques, near-surface mounted NSM-CRFP, NSM-CFRP with externally bonding EB-CFRP, and hybrid CFRP with circularization were studied to increase the seismic performance of existing RC slender columns under lateral loads. Experimentally, 1:3 scale RC models were studied and subjected to both lateral static load and seismic excitation. In the dynamic test, a model was subjected to El Centro 1940 NS earthquake excitation by using a shaking table. According to the test results, the strengthening techniques showed a significant increase in load carrying capacity, of about 86.6%, and 46.6%, for circularization and NSM-CFRP respectively, of the reference unstrengthened columns. On the other hand, column

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of The Mechanical Behavior Of Materials
Behavior of reactive powder concrete containing recycled glass powder reinforced by steel fiber
...Show More Authors
Abstract<p>Environmental sustainability is described as one that avoids the depletion or deterioration of natural resources, while also allowing for the preservation of long-term environmental quality. By practicing environmental sustainability, we may assist to guarantee that the requirements of today’s population are satisfied without risking the capacity of future generations to meet their own needs in the future. Engineers in the field of concrete production are becoming increasingly interested in sustainable development, which includes the utilization of the locally available materials in addition to using the agricultural and industrial waste in construction industry as one of the possib</p> ... Show More
View Publication
Crossref (9)
Crossref
Publication Date
Tue Dec 22 2020
Journal Name
Lecture Notes In Civil Engineering
Geometric Nonlinear Synthetic Earthquake Analysis of Base Isolated Tall Steel Buildings Under Site-Specific Seismic Loading
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Thu Feb 01 2024
Journal Name
Civil Engineering Journal
Effects of GFRP Stirrup Spacing on the Behavior of Doubly GFRP-Reinforced Concrete Beams
...Show More Authors

This study investigates the impact of varying glass fiber-reinforced polymer (GFRP) stirrup spacing on the performance of doubly GFRP-reinforced concrete beams. The research focuses on assessing the behavior of GFRP-reinforced concrete beams, including load-carrying capacity, cracking, and deformability. It explores the feasibility and effectiveness of GFRP bars as an alternative to traditional steel reinforcement in concrete structures. Six concrete beams with a cross-section of 300 mm (wide) × 250 mm (deep), simply supported on a 2100 mm span, were tested. The beams underwent four-point bending with two concentrated loads applied symmetrically at one-third of the span length, resulting in a shear span (a)-to-depth (h) ratio of 2.

... Show More
View Publication
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Engineering
Three-Dimensional Finite Element Simulation of the Buried Pipe Problem in Geogrid Reinforced Soil
...Show More Authors

Buried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures.

This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 15 2022
Journal Name
Engineering, Technology &amp; Applied Science Research
Numerical Modeling of a Pile Group Subjected to Seismic Loading Using the Hypoplasticity Model
...Show More Authors

Various simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Thu Dec 15 2022
Journal Name
Engineering, Technology & Applied Science Research (etasr)
Numerical Modeling of a Pile Group Subjected to Seismic Loading Using the Hypoplasticity Model
...Show More Authors

Various simple and complicated models have been utilized to simulate the stress-strain behavior of the soil. These models are used in Finite Element Modeling (FEM) for geotechnical engineering applications and analysis of dynamic soil-structure interaction problems. These models either can't adequately describe some features, such as the strain-softening of dense sand, or they require several parameters that are difficult to gather by conventional laboratory testing. Furthermore, soils are not completely linearly elastic and perfectly plastic for the whole range of loads. Soil behavior is quite difficult to comprehend and exhibits a variety of behaviors under various circumstances. As a result, a more realistic constitutive model is

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Aug 22 2023
Journal Name
Advances In Structural Engineering
Experimental and finite element analysis of reinforced concrete multi-cell box girders retrofitted with carbon fiber reinforced polymer strips under torsion
...Show More Authors

This study expands the state of the art in studies that assess torsional retrofit of reinforced concrete (RC) multi-cell box girders with carbon fiber reinforced polymer (CFRP) strips. The torsional behavior of non-damaged and pre-damaged RC multi-cell box girder specimens externally retrofitted by CFRP strips was investigated through a series of laboratory experiments. It was found that retrofitting the pre-damaged specimens with CFRP strips increased the ultimate torsional capacity by more than 50% as compared to the un-damaged specimens subjected to equivalent retrofitting. This indicated that the retrofit has been less effective for the girder specimen that did not develop distortion beforehand as a result of pre-loading. From

... Show More
View Publication
Scopus Clarivate Crossref