Recent years have seen an explosion in graph data from a variety of scientific, social and technological fields. From these fields, emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human, driver safety during driving, pain monitoring during surgery etc. A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region, where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion. To reduce the number of generated sub-graphs, overlap ratio metric is utilized for this purpose. After encoding the final selected sub-graphs, binary classification is then applied to classify the emotion of the queried input facial image using six levels of classification. Binary cat swarm intelligence is applied within each level of classification to select proper sub-graphs that give the highest accuracy in that level. Different experiments have been conducted using Surrey Audio-Visual Expressed Emotion (SAVEE) database and the final system accuracy was 90.00%. The results show significant accuracy improvements (about 2%) by the proposed system in comparison to current published works in SAVEE database.
An experiment was carried out to study the effect of soil organic carbon (SOC) and soil texture on the distance of the wetting front, cumulative water infiltration (I), infiltration rate (IR), saturated water conductivity (Ks), and water holding capacity (WHC). Three levels ( 0, 10, 20, and 30 g OC kg-1 ) from organic carbon (OC) were mixed with different soil materials sandy, loam, and clay texture soils. Field capacity (FC) and permanent wilting point (PWP) were estimated. Soil materials were placed in transparent plastic columns(12 cm soil column ), and water infiltration(I) was measured as a function of time, the distance of the wetting front and Ks. Results showed that advance we
The literature shows conflicting outcomes, making it difficult to determine how e-learning affects the performance of students in higher education. The effect of e-learning was studied and data has been gathered with the utilization of a variety of qualitative and quantitative methods, especially in relation to students' academic achievements and perceptions in higher education, according to literature review that has been drawn from articles published in the past two decades (2000-2020). The development of a sense of community in the on-line environment has been identified to be one of the main difficulties in e-learning education across this whole review. In order to create an efficient online learning community, it could be claim
... Show MoreThis study was conducted in the Tissue Culture laboratory of the Horticultural Department of the Faculty of Agriculture at Karbala University to investigate the effects of a light source (Florescent, LED) and adenine sulfate (Ads) a 0, 40, 80, and 120 mg l-1 on the multiplication and rooting of
The problem of the research lies in special motor abilities training programs like the balance that positively affect coordination between the nervous system and muscles. These training programs did not get enough attention from athletes especially young athletes; their training was restricted to physical abilities like strength, speed, and endurance instead. The research aimed at designing an apparatus for developing athletes’ balance in national centers for gifted/ ministry of youth and sport so as to provide a measurement for coached in this field. The results showed that the designed apparatus have a positive effect on developing the subjects’ balance in boxing and basketball athletes.