Online examination is an integral and vital component of online learning. Student authentication is going to be widely seen when one of these major challenges within the online assessment. This study aims to investigate potential threats to student authentication in the online examinations. Adopting cheating in E-learning in a university of Iraq brings essential security issues for e-exam . In this document, these analysts suggested a model making use of a quantitative research style to confirm the suggested aspects and create this relationship between these. The major elements that might impact universities to adopt cheating electronics were declared as Educational methods, Organizational methods, Teaching methods, Technical methods. In order to verify that the design of the questionnaire, has been followed up with two steps of verification. First of all, a approval stage within that , the list of questions examined by the section of specialists in this subject in computer technology and teaching in universities, the feedback received was implemented before proceeding in order in order to this second stage . Second of all, the pilot research has been carried out to check the dependability of the factors . The gathered data has been examined using the Cronbach’s Alpha coefficient dependability test in SPSS 18 software package. This final results demonstrated this all factors are dependable as they acquired a value of 0.9126 and above inside test.
Abstract
The study aims to identify the reality of knowledge management in decision-making in academic departments from the point of view of faculty members at Blonde University. It also aims to propose mechanisms and suggestions to improve decision-making in the academic departments of the university in light of the management of knowledge. To achieve the objectives of the study, a descriptive method was used, in which a questionnaire consisted of (40) items administered to (137) participants of the faculty members. The results of the study indicated that the reality of the application of knowledge management in the decision-making process showed a high score mean. There are no statistically significant d
... Show MoreThe convergence speed is the most important feature of Back-Propagation (BP) algorithm. A lot of improvements were proposed to this algorithm since its presentation, in order to speed up the convergence phase. In this paper, a new modified BP algorithm called Speeding up Back-Propagation Learning (SUBPL) algorithm is proposed and compared to the standard BP. Different data sets were implemented and experimented to verify the improvement in SUBPL.
Computer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreThe present study deals with the websites of Iraqi political parties on the internet to identify the effectiveness in providing communicative applications that help audience to participate, express their opinions, their positions, and other aspects reflecting the extent of employing modern technological tools to allow opportunities for political, and democratic participation since the internet has become an effective tool for political communications of political parties. The research sample includes eight political parties. The research concludes that the Iraqi political parties do not employ interactive communication patterns to reflect their interests in communicating with the public, providing opportunities for their participation an
... Show MoreThe purpose of this paper is to recognize the impact of database levels on fields of banking service (provision of remittance services and transfer of funds, save financial deposits, provision of personal loans services) in some of Iraqi banks using one-way multivariate analysis of variance. The paper population consisted of (120) employees, then a random stratified sample of (104) employees was taken. A questionnaire paper consists of (24) items were designed in order to analyze by one-Way multivariate analysis of variance (MANOVA) using SPSS.One of the main findings of the current paper is that there is an impact of database on fields of banking service in Iraqi banks (Al Rafidain and Al Rasheed).
Background: Laser is a novel physical therapy technique used to treat various conditions, including wound healing, inhibition of bacterial growth, and postoperative wounds. High-power pulsed alexandrite laser therapy is one of the most prevalent forms of laser therapy, which is a noninvasive method for treating various pathological conditions, thereby enhancing functional capacities and quality of life. It is a modern medical and physiotherapeutic technology. Generally, the Alexandrite laser emits infrared light with a wavelength of 755 nm, allowing it to propagate and penetrate tissues. Objective: This study focused on the application of a high-power pulsed alexandrite laser in vitro to evaluate the effect of a pulsed alexandrite l
... Show MoreWhenever, the Internet of Things (IoT) applications and devices increased, the capability of the its access frequently stressed. That can lead a significant bottleneck problem for network performance in different layers of an end point to end point (P2P) communication route. So, an appropriate characteristic (i.e., classification) of the time changing traffic prediction has been used to solve this issue. Nevertheless, stills remain at great an open defy. Due to of the most of the presenting solutions depend on machine learning (ML) methods, that though give high calculation cost, where they are not taking into account the fine-accurately flow classification of the IoT devices is needed. Therefore, this paper presents a new model bas
... Show MoreDetection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with
... Show MoreRetinopathy of prematurity (ROP) can cause blindness in premature neonates. It is diagnosed when new blood vessels form abnormally in the retina. However, people at high risk of ROP might benefit significantly from early detection and treatment. Therefore, early diagnosis of ROP is vital in averting visual impairment. However, due to a lack of medical experience in detecting this condition, many people refuse treatment; this is especially troublesome given the rising cases of ROP. To deal with this problem, we trained three transfer learning models (VGG-19, ResNet-50, and EfficientNetB5) and a convolutional neural network (CNN) to identify the zones of ROP in preterm newborns. The dataset to train th
Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b