Online examination is an integral and vital component of online learning. Student authentication is going to be widely seen when one of these major challenges within the online assessment. This study aims to investigate potential threats to student authentication in the online examinations. Adopting cheating in E-learning in a university of Iraq brings essential security issues for e-exam . In this document, these analysts suggested a model making use of a quantitative research style to confirm the suggested aspects and create this relationship between these. The major elements that might impact universities to adopt cheating electronics were declared as Educational methods, Organizational methods, Teaching methods, Technical methods. In order to verify that the design of the questionnaire, has been followed up with two steps of verification. First of all, a approval stage within that , the list of questions examined by the section of specialists in this subject in computer technology and teaching in universities, the feedback received was implemented before proceeding in order in order to this second stage . Second of all, the pilot research has been carried out to check the dependability of the factors . The gathered data has been examined using the Cronbach’s Alpha coefficient dependability test in SPSS 18 software package. This final results demonstrated this all factors are dependable as they acquired a value of 0.9126 and above inside test.
The construction industry in Iraq suffers from many problems, perhaps the most important of which is the delay in time and the increase in costs. Therefore, it was necessary to try to adopt a new methodology that would help in overcoming these problems. It was suggested to combine building information modeling with the agile management approach because this technique and methodology is modern and helps in reducing time and cost and improving quality. This paper aims to know the status of using Building Information Modeling (BIM) and Agile Project management (APM) in Iraq and to shed light on the merging of this integration, explaining the benefits, difficulties, and workflow practices, finding the most influencing factors on the tim
... Show MoreThe theatrical show consists of theatrical techniques that form the space to display the play that may form conscious visual effects about the receiver. The current search included the (Research problem) which is the immediate question ((What makes the theatrical techniques dazzling and visually exciting in a certain theatrical show?))
It also included (the importance of research) by highlighting the importance of theatrical techniques and the mechanism of contrast.
It also identified the visual stimulus of theatrical techniques in the theater show.
It also included the (research limits), which were temporally determined by the period (1990-1998) and spatially, the Iraqi theater shows (Baghdad), in which theatrical techniques c
The avoidance of failure in construction projects is not an easy task, which makes the failure of the construction project to achieve its objectives a major problem experienced by all countries in the world, especially Iraq. Where nearly two-thirds of the construction projects in the world have been suffered by significant problems as an increase in the cost of the project, delay in the specified duration for execution, and stopping the project. Therefore it is required to study and apply new methods for managing the construction project to ensure its success and achieve its objectives. The aim of this study is to study the Agile project management method and its impact on the construction project. In addition, to identi
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci
... Show MoreSemantic segmentation realization and understanding is a stringent task not just for computer vision but also in the researches of the sciences of earth, semantic segmentation decompose compound architectures in one elements, the most mutual object in a civil outside or inside senses must classified then reinforced with information meaning of all object, it’s a method for labeling and clustering point cloud automatically. Three dimensions natural scenes classification need a point cloud dataset to representation data format as input, many challenge appeared with working of 3d data like: little number, resolution and accurate of three Dimensional dataset . Deep learning now is the po
Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show MorePatients infected with the COVID-19 virus develop severe pneumonia, which typically results in death. Radiological data show that the disease involves interstitial lung involvement, lung opacities, bilateral ground-glass opacities, and patchy opacities. This study aimed to improve COVID-19 diagnosis via radiological chest X-ray (CXR) image analysis, making a substantial contribution to the development of a mobile application that efficiently identifies COVID-19, saving medical professionals time and resources. It also allows for timely preventative interventions by using more than 18000 CXR lung images and the MobileNetV2 convolutional neural network (CNN) architecture. The MobileNetV2 deep-learning model performances were evaluated
... Show MoreBotnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show More