Four metal compounds mixed ligand of azo dye ligand (L) and metformin.(Met) were produced at aquatic ethanol for (1:1:1) (M:L:Met). The prepared compounds were identified by utilizing atomic absorption flame, FT.IR and UV–Vis spectrum manners as well as conductivity mensuration. These compounds was assayed of the gained datum the octahedral geometry was proposed into whole prepared complexes.Also in this research was studied represented examining the antibacterial and antifungal impact of the azo dye ligand (L), metformin.(Met) and (Co,Ni, Cu and Cd complexes) on four types of pathogenic, clinically isolated bacteria that are resistant to antibiotic, like Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Klebsiella pneu
... Show MoreThe research included preparation of new Schiff base (L) by two steps: preparation of precursor [bis(2-formyl-6-methoxyphenyl) succinate] (P) by reacting (3-methoxy salicyl aldehyde) with (succinoyl dichloride) as first step then react the prepared precursor (P) with (ethanethioamide) to have the new Schiff base [bis(2-((ethane thioyl imino) methyl)-6-methoxy phenyl) succinate] (L) as second step. Characterized compounds based on Mass spectra, 1 H, 13CNMR (for ligand (L)), FT-IR and UV spectrum, melting point, molar conduct, %C, %H, and %N, the percentage of the metal in complexes %M, magnetic susceptibility, while study corrosion inhibition (mild steel) in acid solution by weight loss. These measurements proved that by (Oxygen, Nitrogen, a
... Show MoreSummary The aim of this study is the evaluation the resistance of S. marcescence obtained from soil and water to metals chlorides (Zn+2, Hg+2, Fe+2, Al+3, and Pb+2). Four isolates, identified as Serratia marcescence and S. marcescena (S4) were selected for this study according to their resistance to five heavy metals. The ability of S. marcescena (S4) to grow in different concentrations of metals chloride (200-1200 µg/ml) was tested, the highest concentration that S. marcescence (S4) tolerate was 1000 µg/ml for Zn+2, Hg+2, Fe+2, AL+3, pb+2 and 300 µg/ml for Hg+2 through 24 hrs incubation at 37 Co. The effects of temperature and pH on bacteria growth during 72 hrs were also studied. S. marcescence (S4) was affected by ZnCl2, PbCl2, FeC12
... Show MoreComplexes of Au(III) ,Pd (II) , Pt (IV ) and Rh(III) with S – propynyle -2- thiobenzimidazole (BENZA) have been prepared and characterized by IR and UV- Visible spectral methods in addition to magnetic and conductivity measurements and micro – elemental analysis (CHN).The probable structures of the new complexes have been suggested.
Mixed ligand of Co and Ni (II) complexes were prepared from [5-(p-nitrophenyl)-4/-phenyl-1,2,4-triazole-3-dithiocarbamato hydrazide](TRZ.DTC) as primary ligand and 2,2'-bipyridyl (bipy) as a co-ligand with metal salts. These complexes were analytically and spectroscopically characterized in solid state by elemental analyses, flame atomic absorption, magnetic susceptibility and molar conductance measurements, as well as by UV–Vis and FTIR spectroscopy. Infrared, ultra violet spectra reveal a bidentate coordination of the two ligands with metal ions 1:1:1 mole ratio. Room temperature magnetic moments and solid reflectance spectra data indicate paramagnetic complexes with five-coordinate square pyramidal geometry for nickel (II) comple
... Show MoreAzo derivative ligand[H3L] have been synthesized by the reaction of diazonium salt of p-amino benzoic acid with orcinol in(1:1)mole ratio. The bidente ligand was reacted with the metal ions MnII,FeIIandCrIIIin(2:1)mole ratio via reflux in ethanol using Et3N as a base to give complexes of the general formula: [ M(H2L)2(H2O)x]Cly The synthesized compounds were characterized by spectroscopic methods[ I.R , UV-Vis, A.A and H1 NMR]along with melting point, chloride content and conductivity measurements. The complexes were screend for their in vitro antibacterial activity against one strain of staphylococcus as Gram(+) positive and one strain of pseudomonas as Gram(-) Negative, using the agar diffusion technique.
Complexes of Au (III), Pd (II), Pt (IV ) and Rh(III) with S–propynyle-2- thiobenzimidazole (BENZA) have been prepared and characterized by IR and UV- Visible spectral methods in addition to magnetic and conductivity measurements and micro–elemental analysis (CHN).The probable structures of the new complexes have been suggested.