a laser ablation Q-switched Nd: YAG laser with a wave-length of 355 nm at a variety of laser pulse energies (E) and deposited on porous silicon (PS). Optical emission spectrometer was used to diagnosed medium air to study gold plasma characteristics and prepared Au nanoparticles. The laser pulse energy influence has been studied on the plasma characteristics in air. The data showed the emergence of the ionic (Au II) spectral emission lines in the gold plasma emission spectrum. XRD has been utilized to examine structural characteristics. Moreover, AFM results 37.2 nm as the mean value of the diameter that is coordinated in a shape similar to the rod that appears for Au NPs, in addition to that, TEM has been an indication of the fact that synthesized Au NPs were spherical with a mean size of particles, ranging from 25 nm to 30 nm. At high laser pulse energy, the intensity of all emission peaks in the air at atmospheric pressure was considerably greater. Finally, variations in the operating temperature associated with the NH3 gas sensor, created from the samples that have been prepared on the sensitivity of the sensor and response time have been evaluated, the maximal sensitivity is nearly 41% concerning Au NPs that have been ablated via laser energy (E) 400 mJ on the porous silicon of the NH3 gas.
This work is concerned with building a three-dimensional (3D) ab-initio models that is capable of predicting the thermal distribution of laser direct joining processes between Polymethylmethacrylate (PMMA) and stainless steel 304(st.st.304). ANSYS® simulation based on finite element analysis (FEA) was implemented for materials joining in two modes; laser transmission joining (LTJ) and conduction joining (CJ). ANSYS® simulator was used to explore the thermal environment of the joints during joining (heating time) and after joining (cooling time). For both modes, the investigation is carried out when the laser spot is at the middle of the joint width, at 15 mm from the commencement point (joint edge) at traveling time of 3.75 s. Process par
... Show MoreIn the present study, the effects of brake pad particles of lung and liver histological sections were evaluated for (60) adult male mice. The animals were divided into three groups ( A,B,C) according to the periods of exposure (4, 8, and 12) weeks respectively exposed to brake pad particles in addition to the control groups (F) exposed to fresh air only. A special inhalation chamber designed locally has been used to expose the animals. The exposure to brake pad particles was (2.228) µg/m³ for 30 min/day, 5 days/week for (4,8and12) weeks respectively.
The examination in group (A) of the histological sections of the lung showed the thickness of interalveolar septa. Also, a congestion of alveolar capillary was marked indicat
... Show MoreThe bacterial isolates were obtained from Al-Kindi Hospital were diagnosed by the Vitek-2 system and re confirm by 16srRNA gene as S. aurous, the results were shown 20 isolates (66.7%) out of 30 isolates were positive to protease production. All bacterial isolates (100%) were sensitive to Gentamicin and Levofloxacin. but resistant (100%) to aztreonam. The best temperature for enzyme production from bacteria was 37 °C, and the best pH for enzyme production was 7. Partial purification of the bacterial enzyme (protease) was carried out using short steps included ammonium sulfate 65% saturation, ion exchange using DEAE- cellulose column and then applied on gel filtration chromatography using Sephadex G-200 column. The enzymatic activit
... Show MoreThe present research was conducted to reduce the sulfur content of Iraqi heavy naphtha by adsorption using different metals oxides over Y-Zeolite. The Y-Zeolite was synthesized by a sol-gel technique. The average size of zeolite was 92.39 nm, surface area 558 m2/g, and pore volume 0.231 cm3/g. The metals of nickel, zinc, and copper were dispersed by an impregnation method to prepare Ni/HY, Zn/HY, Cu/HY, and Ni + Zn /HY catalysts for desulfurization. The adsorptive desulfurization was carried out in a batch mode at different operating conditions such as mixing time (10,15,30,60, and 600 min) and catalyst dosage (0.2,0.4,0.6,0.8,1, and 1.2 g). The most of the sulfur compounds were removed at 10 min for all catalyst ty
... Show MoreBackground The application of nanotechnology to biomedical surfaces is explained by the ability of cells to interact with nanometric features. The aim of this study was to consider the role of nanoscale topographic modification of CPTi dental implant using chemical etching method for the purpose of improving osseointegration. Materials and methods: Commercial pure titanium rod was machined into 20 dental implants. Each implant was machined in diameter about 3mm, length of 8mm (5mm was threaded part and 3mm was flat part). Implants were prepared and divided into 2 groups according to the types of surface modification method used: 1st group (10 implant) remained without nano surface modification (control), 2nd group include (10 implant) etche
... Show MoreFormation of Au–Ag–Cu ternary alloy nanoparticles (NPs) is of particular interest because this trimetallic system have miscible (Au–Ag and Au–Cu) and immiscible (Ag– Cu) system. So there is a possibility of phase segregation in this ternary system. At this challenge it was present attempts synthetic technique to generate such trimetallic alloy nanoparticles by exploding wire technique. The importance of preparing nanoparticles alloys in distilled water and in this technique makes the possibility of obtaining nanoparticles free of any additional chemical substance and makes it possible to be used in the treatment of cancer or diseases resulting from bacterial or virus with least toxic. In this work, three metals alloys Au-Ag-Cu
... Show MoreThe study focused on the treatment of real oilfield produced water from the East Baghdad field affiliated to the Midland Oil Company (Iraq) using an oil skimming process followed by a coagulation/flocculation process for zero liquid discharge system applications. Belt type oil skimmer was utilized for evaluating the process efficiency with various operating conditions such as temperature (17-40 °C) and time (0.5-2.5 hr.). Polyaluminum chloride (PAC) coagulant and polyacrylamide (PAM) flocculant was used to investigate the performance of the coagulation/flocculation process with PAC dosage (5-90 ppm) and pH (5-10) as operating conditions. In the skimming process, the oil content, COD, turbidity, and TSS decreased with an increase in tempera
... Show MoreCircular thin walled structures have wide range of applications. This type of structure is generally exposed to different types of loads, but one of the most important types is a buckling. In this work, the phenomena of buckling was studied by using finite element analysis. The circular thin walled structure in this study is constructed from; cylindrical thin shell strengthen by longitudinal stringers, subjected to pure bending in one plane. In addition, Taguchi method was used to identify the optimum combination set of parameters for enhancement of the critical buckling load value, as well as to investigate the most effective parameter. The parameters that have been analyzed were; cylinder shell thickness, shape of stiffeners section an
... Show MoreDielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni
... Show MoreThe numerical simulation for the low frequency waves in dusty plasma has been studied. The studying was done by taking two special cases depending on the direction of the propagation of the wave:First, when the propagation is parallel to the magnetic field K//B,this mode is called acoustic mode.Second,when K B this mode is called cyclotron mode.In addition, every one of the two modes divided into two modes depending on the range of the frequency.The Coulomb coupling parameter was studied, with temperature T,density of the dust particles Nd ,and the charge of the particle Qd.The low frequency electrostatic waves in dusty grains were studied. Also, the properties of ion-acoustic waves and ion-cyclotron waves are shown to modify even through
... Show More