a laser ablation Q-switched Nd: YAG laser with a wave-length of 355 nm at a variety of laser pulse energies (E) and deposited on porous silicon (PS). Optical emission spectrometer was used to diagnosed medium air to study gold plasma characteristics and prepared Au nanoparticles. The laser pulse energy influence has been studied on the plasma characteristics in air. The data showed the emergence of the ionic (Au II) spectral emission lines in the gold plasma emission spectrum. XRD has been utilized to examine structural characteristics. Moreover, AFM results 37.2 nm as the mean value of the diameter that is coordinated in a shape similar to the rod that appears for Au NPs, in addition to that, TEM has been an indication of the fact that synthesized Au NPs were spherical with a mean size of particles, ranging from 25 nm to 30 nm. At high laser pulse energy, the intensity of all emission peaks in the air at atmospheric pressure was considerably greater. Finally, variations in the operating temperature associated with the NH3 gas sensor, created from the samples that have been prepared on the sensitivity of the sensor and response time have been evaluated, the maximal sensitivity is nearly 41% concerning Au NPs that have been ablated via laser energy (E) 400 mJ on the porous silicon of the NH3 gas.
The natural polyphenolic compound that cinnamon contains is well known for its various biological activities, a broad variety of pharmacological and therapeutic properties. Diversified biomedical and pharmacological applications benefit from organic nanoparticles with controlled properties. Bioactive and non-toxic, cinnamon nanoparticles (CNPs) can be effective antibacterial agents. Driven by this idea, we prepared spherical CNPs using liquid (PLAL) pulse laser ablation technique and defined those NPs. Using Q-switched Nd : YAG With a wavelength of 1064 nm pulse laser of constant energy 500 mj , And different laser pulses ( 250 , 500 , 750 , 1000 ) pulse /sec a pure cinnamon target submerged in
... Show MoreA new four series of 2,2′-([1,1′- phenyl or biphenyl]-4,4′-diylbis(azanediyl)) bis(N′-((E)-1-(4-alkoxyphenyl) ethylidene) acetohydrazide) [V-XI]a,b and 1,1′-(2,2′-([1,1′- phenyl or biphenyl]-4,4′-diyl bis(azanediyl)) bis- (acetyl)) bis(3-(4-ethoxyphenyl)-1H-pyrazole-4-carbalde hyde) [XII-XVIII]a,b have been synthesized by varying terminal lateral alkoxy chain length (n = 1–3, 5–8), central linkage group (phenyl or biphenyl) and induced pyrazole heterocyclic ring in the main chain. The last two series were synthesized by the cyclization of substituted acetophenone hydrazones with Vilsmeier–Haack reagent (DMF/POCl3) to produce 4-formylpyrazole derivatives. The chemical structures of the synthesized compounds were examine
... Show MoreN, N′- bis[4-hydroxy phenyl] pyromillitdiimide [II] was prepared from the corresponding diamic acid , which was transfered to its new ester by the reaction with chloroethyl acetate [III ], [III] was used to prepare the novel hydrazide derivative [IV] , which was allowed to react with several aldehydes to yield the hydrazones [V – IX]. All the new compounds were synthesized , and characterized by their melting points .HNMR for some of them1FTIR,C,H,N analysis and ,
In this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.
N, N′- bis[4-hydroxy phenyl] pyromillitdiimide [II] was prepared from the corresponding diamic acid , which was transfered to its new ester by the reaction with chloroethyl acetate [III ], [III] was used to prepare the novel hydrazide derivative [IV] , which was allowed to react with several aldehydes to yield the hydrazones [V – IX]. All the new compounds were synthesized , and characterized by their melting points .HNMR for some of them1FTIR,C,H,N analysis and ,
Radio observations from astronomical sources like supernovae became one the most important sources of information about the physical properties of those objects. However, such radio observations are affected by various types of noise such as those from sky, background, receiver, and the system itself. Therefore, it is essential to eliminate or reduce these undesired noise from the signals in order to ensure accurate measurements and analysis of radio observations. One of the most commonly used methods for reducing the noise is to use a noise calibrator. In this study, the 3-m Baghdad University Radio Telescope (BURT) has been used to observe crab nebula with and without using a calibration unit in order to investigate its impact on the sign
... Show MoreIn this work, Elzaki transform (ET) introduced by Tarig Elzaki is applied to solve linear Volterra fractional integro-differential equations (LVFIDE). The fractional derivative is considered in the Riemman-Liouville sense. The procedure is based on the application of (ET) to (LVFIDE) and using properties of (ET) and its inverse. Finally, some examples are solved to show that this is computationally efficient and accurate.
Radio observations from astronomical sources like supernovae became one the most important sources of information about the physical properties of those objects. However, such radio observations are affected by various types of noise such as those from sky, background, receiver, and the system itself. Therefore, it is essential to eliminate or reduce these undesired noise from the signals in order to ensure accurate measurements and analysis of radio observations. One of the most commonly used methods for reducing the noise is to use a noise calibrator. In this study, the 3-m Baghdad University Radio Telescope (BURT) has been used to observe crab nebula with and without using a calibration unit in order to investigate its impact on the sign
... Show MoreAbstract
An experimental study was conducted for measuring the quality of surface finishing roughness using magnetic abrasive finishing technique (MAF) on brass plate which is very difficult to be polish by a conventional machining process where the cost is high and much more susceptible to surface damage as compared to other materials. Four operation parameters were studied, the gap between the work piece and the electromagnetic inductor, the current that generate the flux, the rotational Spindale speed and amount of abrasive powder size considering constant linear feed movement between machine head and workpiece. Adaptive Neuro fuzzy inference system (ANFIS) was implemented for evaluation of a serie
... Show More