The main parameters and methods influencing the removal of Gentian Violet (GV) dye from aqueous media were investigated using a stachy plant in this study. The surface of the stachy plant was determined using FTIR spectra. Adsorption is influenced by the adsorbent's characteristic groups. The research took into account the usual conditions for GV dye adsorption by the stachy plant, such as the impact of contact time. Mass dosage , after 0.3 g the amount of adsorbed dye declines. Study pH and ionic strength, the results obtained showed that at pH 3 the largest adsorption of (GV) was seen, while at pH 9, the lowest adsorption was observed at 298 K, the adsorption kinetics and equilibrium constants were achieved, and the equilibrium data was fitted using the Langmuir, Freundlich, and Temkin models. The pseudo-first-order and pseudo-second-order kinetic models were used to investigate the adsorption process of gentian violet. The adsorption kinetics was discovered to be governed by a pseudo-second-order kinetic model with a determination coefficient (R2) of 0. 0.9943. Study the theoretical electrostatics of Gentian Violet dye was measured and plotted as a 2D and 3D contour and the program hyperchem-8.07 was used for semi-empirical and molecular mechanic calculations in the gas phase to estimate the total energy.
This work was carried to study the capability of activated alumina from bauxite compared with activated carbon adsorption capability to reduce the color content from Al-Hilla Textile Company wastewater. Six dyes were studied from two types(reactive and dispersed) namely (blue, red, yellow) from wastewater and aqueous solutions.
Forty eight experiments were carried out to study the effect of various initial conditions (bed height, flow rate, initial concentration, pH value, temperature, and competitive adsorption) on adsorption process.
The results showed that the adsorption process using activated carbon insured a good degree of color reduction reaching (99.7%) and was better than activated bauxite which reached (95%).
This study included isolation of some active materials from Curcuma longa such as tannins, saponins and volatile oils with percentage of 59%, 31%, and 9% respectively. Also the study included the determination of minerals in Curcuma longa such as " Na, Ca and K" using Flame photometer. The concentrations of these minerals were (14 ppm),(10 ppm) and )76 ppm) respectively. The anti-bacterial activity study was performed for the active materials isolated from Curcuma longa against two genus of pathogenic bacteria, Escherichia Coli and Staphylococcus aurous by using agar-well diffusion method. It appeared from this study that all of the extraction have inhibitory effect on bacteria was used. The inhibition zone diameter varies with
... Show MoreBiosorption of cadmium ions from simulated wastewater using rice husk was studied with initial concentration of 25 mg/l. Equilibrium isotherm was studied using Langmuir, Freundlich, BET and Timken models. The results show that the Freundlich isotherm is the best fit model to describe this process with high determination coefficient equals to 0.983. There was a good compliance between the experimental and theoretical results. Highest removal efficiency 97% was obtained at 2.5g of adsorbent, pH 6 and contact time 100 min.
Industrial wastewater containing nickel, lead, and copper can be produced by many industries. The reverse osmosis (RO) membrane technologies are very efficient for the treatment of industrial wastewater containing nickel, lead, and copper ions to reduce water consumption and preserving the environment. Synthetic industrial wastewater samples containing Ni(II), Pb(II), and Cu(II) ions at various concentrations (50 to 200 ppm), pressures (1 to 4 bar), temperatures (10 to 40 oC), pH (2 to 5.5), and flow rates (10 to 40 L/hr), were prepared and subjected to treatment by RO system in the laboratory. The results showed that high removal efficiency of the heavy metals could be achieved by RO process (98.5%, 97.5% and 96% for Ni(II),
... Show MoreThe performance of a batch undivided electrochemical reactor with a rotating cylinder electrode of woven-wire (60 mesh size), stainless steel 316, is examined for the removal of copper from synthetic solution of o.5 M sodium chloride containing 125 ppm at pH ≈ 3.5. The effect of total applied current, rotation speed on the figures of merit of the reactor is analyzed. For an applied current of 300 mA at 100 rpm, the copper concentration decreased from 125 to mg l-1 after 60 min of electrolysis with a specific energy consumption of 1.75 kWh kg-1 and a normalized space velocity of 1.62 h-1. The change in concentration was higher when the total applied currents were increased because of the turbulence
... Show MoreM D simulation of Imidazole aqueous solution at 298.15, 303.15 and 308.15 K was carried out by using OPLS force field from this simulation we calculate RDF of N-H… OH2 and N…HOH type of interactions, the results show that the hydration shell around N-H site at 5A0 decade with the increase of temperature and reformed at 10A0, so N site has two conserved hydration shells at approximate 4 and 6A0 respectively these are stable in this temperature range but the order and number of water molecules are varying with temperature specially the hydration shell at 4A0
This study present, the density of alum chrom in water and in aqueous solution of poly (ethylene glycol) (1500) at different temperature (288.15, 293.15, 298.15) k. Experimental values of density was used to calculate the apparent molar volume (Vθ), limiting apparent molar volume Vθ˚, experimental slope (Sv) and the partial molar volume at infinite dilution of transfer of solute Δνθ˚. These results have been interpreted the molecular interaction in term of ion- solvent, ion– ion interaction. The structure making /breaking capacities have been inferred from the sign of the second derivative of limiting partial molar volume with respect temperature at constant pressure. Alum has been formed to act as structure breaker in water and aq
... Show MoreThe present work aimed to study the efficiency of nanofiltration (NF) and reverse osmosis (RO) process for treatment of heavy metals wastewater contains zinc. In this research, the salt of heavy metals were zinc chloride (ZnCl2) used as feed solution.Nanofiltration and reverse osmosis membranes are made from polyamide as spiral wound module. The parameters studied were: operating time (0 – 70 min), feed concentrations for zinc ions (10 – 300 mg/l), operating pressure (1 – 4 bar).The theoretical results showed, flux of water through membrane decline from 19 to 10.85 LMH with time. Flux decrease from 25.84 to 10.88 LMH with the increment of feed concentration. The raise of pressure, the flux increase for NF and RO membranes.The maximum
... Show MoreTwo homopolymeric and three copolymeric additives for base oil were synthesized using octyl acrylate (OA) and tert-butyl acrylamide (TBA) monomers. The two additives named P1 and P2 are the homopolymers of TBA and OA, respectively, whereas copolymeric additives named Co1, Co2, and Co3 were synthesized by varying the ratios of TBA:OA as 1:3, 3:1 and 1:1, respectively. The prepared polymers were characterized by Fourier Transform Infrared (FTIR). Based on the solubility of synthesized polymers in base oil and reactivity ratios of TBA/OA copolymer (0.222, 0.434) calculated by Fineman-Ross method, P2, Co1, Co2 and Co3 were selected to evaluate their performance as pour point depressant (PPD), viscosity improver (VII), and anticorrosion addit
... Show More