Most heuristic search method's performances are dependent on parameter choices. These parameter settings govern how new candidate solutions are generated and then applied by the algorithm. They essentially play a key role in determining the quality of the solution obtained and the efficiency of the search. Their fine-tuning techniques are still an on-going research area. Differential Evolution (DE) algorithm is a very powerful optimization method and has become popular in many fields. Based on the prolonged research work on DE, it is now arguably one of the most outstanding stochastic optimization algorithms for real-parameter optimization. One reason for its popularity is its widely appreciated property of having only a small number of parameters to tune. This paper presents a detailed review of DE parameter tuning with a table compromised a recommended guidelines for these parameters, along with a full description of the basic DE algorithm and its corresponding operators, overlooked by previous studies. It is aimed at practitioners to help them achieve better results when adopting DE as an optimization method for their problems with less time and effort. Moreover, an experimental study has been conducted over fifteen test problems and the results obtained prove the reliability of the setting values.
In this paper we have presented a comparison between two novel integral transformations that are of great importance in the solution of differential equations. These two transformations are the complex Sadik transform and the KAJ transform. An uncompressed forced oscillator, which is an important application, served as the basis for comparison. The application was solved and exact solutions were obtained. Therefore, in this paper, the exact solution was found based on two different integral transforms: the first integral transform complex Sadik and the second integral transform KAJ. And these exact solutions obtained from these two integral transforms were new methods with simple algebraic calculations and applied to different problems.
... Show MoreThis paper aims to find new analytical closed-forms to the solutions of the nonhomogeneous functional differential equations of the nth order with finite and constants delays and various initial delay conditions in terms of elementary functions using Laplace transform method. As well as, the definition of dynamical systems for ordinary differential equations is used to introduce the definition of dynamical systems for delay differential equations which contain multiple delays with a discussion of their dynamical properties: The exponential stability and strong stability
The main objective of this research is to design and select a composite plate to be used in fabricating wing skins of light unman air vehicle (UAV). The mechanical properties, weight and cost are the basis criteria of this selection. The fiber volume fraction, fillers and type of fiber with three levels for each were considered to optimize the composite plate selection. Finite element method was used to investigate the stress distribution on the wing at cruise flight condition in addition to estimate the maximum stress. An experiments plan has been designed to get the data on the basis of Taguchi technique. The most effective parameters at the process to be find out by employing L9
... Show MoreIn this paper was discussed the process of compounding two distributions using new compounding procedure which is connect a number of life time distributions ( continuous distribution ) where is the number of these distributions represent random variable distributed according to one of the discrete random distributions . Based on this procedure have been compounding zero – truncated poisson distribution with weibell distribution to produce new life time distribution having three parameter , Advantage of that failure rate function having many cases ( increasing , dicreasing , unimodal , bathtube) , and study the resulting distribution properties such as : expectation , variance , comulative function , reliability function and fa
... Show MoreThis work aims to optimize surface roughness, wall angle deviation, and average wall thickness as output responses of ALuminium-1050 alloy cone formed by the single point incremental sheet metal forming process. The experiments are accomplished based on the use of a mixed level Taguchi experimental design with an L18 orthogonal array. Six levels of step depth, three levels of tool diameter, feed rate, and tool rotational speed have been considered as input process parameters. The analyses of variance (ANOVA) have been used to investigate the significance of parameters and the effect of their levels for minimum surface roughness, minimum wall angle deviation, and maximum average wall thickness. The results indicate that step depth and tool r
... Show More