Recently, environmental noise has arisen from various sources, such as those from exhaust mufflers of combustion engines found in cars, trucks, or power generators, which produce significant noise during their operation. Controlling the radiated noise from these mufflers is a major factor in improving acoustic comfort and minimizing the impact on the surrounding communities. Numerous research has been presented for this reason by modification of the internal structure of the exhaust muffler. The main objective of this work is to reduce the noise level emitted from exhaust mufflers. This can be achieved by adjusting structure parameters to attenuate the surrounding environment's radiated noise. Analysis of pressure-wave propagation has been done by building 3D models using COMSOL Multiphysics software. Different entities were conducted to investigate the influence of muffler shells and plate thicknesses on acoustic performance through the frequency domain to obtain better attenuation. SPL over a frequency band is presented, describing how the sound intensity varies at different frequencies within a given bandwidth. The results showed that increasing the muffler shell thickness improved the TL; this particularly causes a double value at a range above 1.2 kHz, where there are two distinct peaks at 1.3 kHz and 2.8 kHz. Additionally, it was found that increasing the muffler plate thickness reduces the TL whole range and moves the curve peak to higher frequencies. This is because the pressure pulses that stimulate the shell plates would exert a more distinct influence on plates characterized by a reduced thickness, and the muffler structure thickness is correlated with its increased stiffness, resulting in an elevation of the frequency for this eigenmode
The effect of some environmental factors in the loss rate for high weights virgins are full to the screwworm fly of the ancient world and included temperatures 15,20,25,30,35,40 study showed that the rate of loss in weight virgins advanced to full participants at a temperature of 15 C while notgets evolution
Indium Antimonide (InSb) thin films were grown onto well cleaned glass substrates at substrate temperatures (473 K) by flash evaporation. X-ray diffraction studies confirm the polycrystalline of the films and the films show preferential orientation along the (111) plane .The particle size increases with the increase of annealing time .The transmission spectra of prepared samples were found to be in the range (400-5000 cm-1 ) from FTIR study . This indicates that the crystallinity is improved in the films deposited at higher annealing time.
The aim of this work is studying the binary system ??'??? Ni?)with two ratios (y=36,80) by using casting method for preparing the samples.Magnetic and Mechanical properties have been studidt different httrea^nttem^rature.All the alloys were found a ferromagnetic behavior and sensitive to the heat treatment. Best properties were found at the heat treatment 1100 C°.A significant different results were found above 1100C° for lower magnetic and mechanical values. This is possibly due to the change on the degree of magnetic moment orders, in which most of the moments are started to remove from coupled ferromagnetically.?
This study presents the effect of laser energy on burning loss of magnesium from the holes' drilled in aluminum alloy 5052. High energy free running pulsed Nd:Glass laser of 300 µs pulse duration has been used to perform the experiments. The laser energy was varied from 1.0 to 8.0 Joules, The drilling processes have been carried out under atmospheric pressure and vacuum inside a specially designed chamber. Microhardness of the blind drilled holes has been investigated .The results indicated that the magnesium loss could be manipulated by adjusting the focusing conditions of the laser beam. Almost, the obtained holes were free of cracks with low taper and low sputter deposition. .The holes performed under atmospheric conditions have high
... Show MoreGiven the paucity and toxicity of available drugs for leishmaniasis, coupled with the advent of drug resistance, the discovery of new therapies for this neglected tropical disease is recognised as being of the utmost urgency. As such antimicrobial peptides (AMPs) have been proposed as promising compounds against the causative Leishmania species, insect vector-borne protozoan parasites. Here the AMP temporins A, B and 1Sa have been synthesised and screened for activity against Leishmania mexicana insect stage promastigotes and mammalian stage amastigotes, a significant cause of human cutaneous disease. In contrast to previous studies with other species the activity of these AMPs against L. mexicana amastigotes was low. This suggests that ama
... Show More
The current research aims to validate the Effect of technical innovation on human resources management ambidexterity through job embeddedness. The current research was done in Al-Etihad Food Industries Co. Ltd. And within the industrial environment, the research was designed according to the descriptive research. And to achieve the main goal of the research above, the researcher used the questionnaire as a key instrument to collect data through the views of a sample of managers, and employees at the senior, middle and executive management level. The research sample reached (107) individuals, the data were analysed using the statistical packages (SPSS v. 26) and ( SMART PLS v 3. 3. 8) the group of statistical
... Show MoreThe impacts of harvested cropland in the double cropping region (DCR) of the northern China plains (NCP) on the regional climate are examined using surface meteorological data and the satellite-derived normalized difference vegetation index (NDVI) and land surface temperature (LST). The NDVI data are used to distinguish the DCR from the single cropping region (SCR) in the NCP. Notable increases in LST in the period May–June are found in the area identified as the DCR on the basis of the NDVI data. The difference between the mean daily maximum temperature averaged over the DCR and SCR stations peaks at 1.27°C in June. The specific humidity in the DCR is significantly smaller than in
Abstract: Reflection optical fibre Humidity sensor is presented in this work, which is based on no core fibre prepared by splicing a segment of no core fibre (NCF) at different lengths 1-6 cm with fixed diameter 125 µm and a single mode fibre (SMF). The range of humidity inside the chamber is controlled from 30% to 90% RH at temperature ~ 30 °С. The experimental result shows that the resonant wavelength dip shift decreases linearly with an increment of RH% and the sensitivity of the sensor increased linearly with an increasing in the length of NCF. However, a high sensitivity 716.07pm/RH% is obtained at length 5cm with good stability and reputability. Furthermore, the sensor is shif
... Show More