This study investigates the impact of varying glass fiber-reinforced polymer (GFRP) stirrup spacing on the performance of doubly GFRP-reinforced concrete beams. The research focuses on assessing the behavior of GFRP-reinforced concrete beams, including load-carrying capacity, cracking, and deformability. It explores the feasibility and effectiveness of GFRP bars as an alternative to traditional steel reinforcement in concrete structures. Six concrete beams with a cross-section of 300 mm (wide) × 250 mm (deep), simply supported on a 2100 mm span, were tested. The beams underwent four-point bending with two concentrated loads applied symmetrically at one-third of the span length, resulting in a shear span (a)-to-depth (h) ratio of 2.8. The experimental findings reveal that altering the GFRP stirrup spacing along the longitudinal axis of the beams, from 200 mm (equivalent to the effective depth (d)) to 50 mm (equal to (d⁄4)), altered the mode of failure from flexure-shear to flexure-compression. However, when the spacing was equal to or less than (d⁄3), there was no significant improvement in load-carrying capacity, as the contribution of GFRP bars in resisting shear loads was limited. Under service loads, the GFRP-reinforced beams exhibited wider cracks, but reducing the stirrup spacing helped restrain crack widening. Incorporating GFRP bars in the compression zone had a positive effect on reducing crack width in the tension zone. Additionally, using GFRP stirrups with spacing varying between (d) and (d⁄2) in the pure bending region increased the deflection ductility indexes. To enhance the ductility of GFRP-reinforced concrete beams, it is recommended to use GFRP stirrups in the pure bending region with spacing greater than the spacing between GFRP stirrups in the shear spans. The study highlights that the current ACI code overestimates the shear capacity provided by GFRP stirrups, particularly when the spacing is less than or equal to (d⁄3). Doi: 10.28991/CEJ-2024-010-02-011 Full Text: PDF
A flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete
... Show MoreA flexible pavement structure usually comprises more than one asphalt layer, with varying thicknesses and properties, in order to carry the traffic smoothly and safely. It is easy to characterize each asphalt layer with different tests to give a full description of that layer; however, the performance of the whole; asphalt structure needs to be properly understood. Typically, pavement analysis is carried out using multi-layer linear elastic assumptions, via equations and computer programs such as KENPAVE, BISAR, etc. These types of analysis give the response parameters including stress, strain, and deflection at any point under the wheel load. This paper aims to estimate the equivalent Resilient Modulus (MR) of the asphalt concrete
... Show MoreRoller Compacted Concrete (RCC) is a technology characterized mainly by the use of rollers for compaction; this technology achieves significant time and cost savings in the construction of dams and roads. The primary scope of this research is to study the durability and performance of roller compacted concrete that was constructed in the laboratory using roller compactor manufactured in local market. A total of (60) slab specimen of (38×38×10) cm was constructed using the roller device, cured for 28 days, then 180 sawed cubes and 180 beams are obtained from RCC slab. Then, the specimens are subjected to 60 cycles of freezing and thawing, sulfate attack test and wetting and drying. The degree of effect of the type of coarse aggregate (c
... Show MoreThe local asphalt concrete fracture properties represented by the fracture energy, J-integral, and stress intensity factor are calculated from the results of the three point bending beam test made for pre notches beams specimens with deformation rate of 1.27 mm/min. The results revealed that the stress intensity factor has increased by more than 40% when decreasing the testing temperature 10˚C and increasing the notch depth from 5 to 30mm. The change of asphalt type and content have a limited effect of less than 6%.
This research aims to prepare exercises of varying resistances and muscular work exchange for 200m freestyle swimmers, in addition to these exercises’ effects on physical adequacy and the time needed to complete this distance. The experimental method is the basis for the design of the experimental group and the control group of a 100% intentionally chosen sample from a community of elite-youth swimmers of 200m freestyle swimming for the sport season of 2020-2021 at the Police Sports Club. The sample consists of 15 swimmers that were divided, randomly, into two groups; 7 of them in the experimental group while 8 were in the control group. Physical adequacy was calculated with the use of swimmers’ mechanical energy measurements
... Show MoreIn this research ,Undoped Nio and 1%Li doped Nio thin films were deposited utilizing chemical spray pyrolysis on the glass substrates heated (450C). The effects of non-thermal plasma on the structural and optical properties were studied. XRD measurement shows that Nio and Nio:1%Li films were found to be polycrystalline and have cubic structure with a preferred orientation (111). Decreased crystal size after exposure especially at (7) sec. AFM data indicate that the surface roughness average and (RMS) values of the prepared doped films are increasing after exposure to plasma, the transmittance increases after doped samples exposure to plasma, it was found that the energy gap value decreased when doped samples exposure to plasma, also, thickn
... Show MoreThis experiment was carried out at a private field in the eastern Radwaniyah Baghdad for the fall season 2020/2021 and spring 2021 to study the effects of adding mineral fertilizers, spraying salicylic acid and amino acids on some growth traits and yield of industrial potato plants. 200 kg N h-1 , 100 kg P2O5 h-1, 100 kg K2O h-1 and F2 consist of 275 kg N h-1, 180 kg P2O5 h-1, 200 K2O h-1 and F3 consist of 350 kg N h-1, 360 kg P2O5 h-1, 300 K2O h-1 and salicylic acid in three concentrations of 0,50 and 100 mg L-1 ( S1, S2, S3) and amino acids in three concentrations of 0, 1.25 and 2.5 ml L-1 ( A1, A2 , A3) It was carried out as a factorial split plot experiment, where the fertilizer levels (F1, F2 and F3) are in the main plot and th
... Show MoreThis study aimed to determine the effects of alcoholic and aqueous extracts of caper (Capparis Spinosa) and acetic acid on serum lipid profile and proteins levels in mice. Sixty adult mice with an average weight of 24±4 g grams were divided into four groups (15 mice for each). The first group (G1) was administrated daily with an oral dose of caper alcoholic extract (200 mg/kg) for 28 days. The second group (G2) was administrated daily with an oral dose of caper aqueous extract (200 mg/kg) for 28 days. The third group (G3) was administrated with a daily dose of 10 % acetic acid (2 ml/kg) for 28 days. The fourth Group (G4) was administrated daily with distilled water for 28 days, as a control
... Show MoreFlexible pavements are subjected to three main distress types: fatigue crack, thermal crack, and permanent deformation. Under severe climate conditions, thermal cracking particularly contributes largely to a considerable scale of premature deterioration of pavement infrastructure worldwide. This challenge is especially relevant for Europe, as weather conditions vary significantly throughout the year. Hydrated lime (HL) has been recognized as an effective additive to improve the mechanical properties of asphalt concrete for pavement applications. Previous research has found that a replacement of conventional limestone dust filler using hydrated lime at 2.5% of the total weight of aggregates generated an optimum improvement in the mec
... Show More