This study investigates the impact of varying glass fiber-reinforced polymer (GFRP) stirrup spacing on the performance of doubly GFRP-reinforced concrete beams. The research focuses on assessing the behavior of GFRP-reinforced concrete beams, including load-carrying capacity, cracking, and deformability. It explores the feasibility and effectiveness of GFRP bars as an alternative to traditional steel reinforcement in concrete structures. Six concrete beams with a cross-section of 300 mm (wide) × 250 mm (deep), simply supported on a 2100 mm span, were tested. The beams underwent four-point bending with two concentrated loads applied symmetrically at one-third of the span length, resulting in a shear span (a)-to-depth (h) ratio of 2.8. The experimental findings reveal that altering the GFRP stirrup spacing along the longitudinal axis of the beams, from 200 mm (equivalent to the effective depth (d)) to 50 mm (equal to (d⁄4)), altered the mode of failure from flexure-shear to flexure-compression. However, when the spacing was equal to or less than (d⁄3), there was no significant improvement in load-carrying capacity, as the contribution of GFRP bars in resisting shear loads was limited. Under service loads, the GFRP-reinforced beams exhibited wider cracks, but reducing the stirrup spacing helped restrain crack widening. Incorporating GFRP bars in the compression zone had a positive effect on reducing crack width in the tension zone. Additionally, using GFRP stirrups with spacing varying between (d) and (d⁄2) in the pure bending region increased the deflection ductility indexes. To enhance the ductility of GFRP-reinforced concrete beams, it is recommended to use GFRP stirrups in the pure bending region with spacing greater than the spacing between GFRP stirrups in the shear spans. The study highlights that the current ACI code overestimates the shear capacity provided by GFRP stirrups, particularly when the spacing is less than or equal to (d⁄3). Doi: 10.28991/CEJ-2024-010-02-011 Full Text: PDF
The development of new building materials, able of absorbing more energy is an active research area. Engineering Cementitious Composite (ECC) is a class of super-elastic fiberreinforced cement composites characterized by high ductility and tight crack width control. The use of bendable concrete produced from Portland Limestone Cement (PLC) may lead to an interest in new concrete mixes. Impact results of bendable concrete reinforced with steel mesh and polymer fibers will provide data for the use of this concrete in areas subject to impact loading. The experimental part consisted of compressive strength and impact resistance tests along with a result comparison with unreinforced concrete. Concrete samples, with dimensions of 100×
... Show MoreThe aim of our study is to reveal the effect of steel reinforcement details,tensile steel reinforcement ratio, compressed reinforcing steel ratio,reinforcing steel size, corner joint shape on the strength of reinforcedconcrete Fc' and delve into it for the most accurate details and concreteconnections about the behavior and resistance of the corner joint ofreinforced concrete, Depending on the available studies and sources inaddition to our study, we concluded that each of these effects had a clearrole in the behavior and resistance of the corner joint of reinforced concreteunder the influence of the negative moment and yield stress. A studyof the types of faults that can be reinforced angle joints obtains detailsand conditions of c
... Show MoreReinforced concrete (RC) slabs strengthened with carbon fibre reinforced polymer (CFRP) and subjected to flexural actions may experience many types of failure, including FRP debonding, FRP rupture and concrete crushing. Of these different types of failure modes, FRP debonding stands out as the most predominant type of failure because of its dependence on the relatively weak bond interface between the soffit of the RC member and the FRP sheet attached to it. Many anchorage systems have been developed to enhance the performance of strengthened systems, one of which is the hybrid anchor, which combines the effects of patch anchors and spike anchors. Hybrid anchors have shown significant enhancement when used with RC members subjected to shear
... Show MoreIn this study, plain concrete simply supported beams subjected to two points loading were analyzed for the flexure. The numerical model of the beam was constructed in the meso-scale representation of concrete as a two phasic material (aggregate, and mortar). The fracture process of the concrete beams under loading was investigated in the laboratory as well as by the numerical models. The Extended Finite Element Method (XFEM) was employed for the treatment of the discontinuities that appeared during the fracture process in concrete. Finite element method with the feature standard/explicitlywas utilized for the numerical analysis. Aggregate particles were assumedof elliptic shape. Other properties such as grading and sizes of the aggr
... Show More
Purpose: Providing practical knowledge of the requirements of a detailed feasibility study for selecting the investment project.
Findings: Directing the private sector towards investing in productive projects - the pre-cast reinforced concrete project - as it achieves a financial return as well as providing Providing foreign currencies by reducing imports and exploiting available natural resources
Practical implications: The importance of a detailed feasibility study to determining whether the project can be implemented or not.
The precast concrete method is one of the best modern c
... Show MoreImpact strength of self-compacted concrete is a field of interest, mostly when the concrete is produced from sustainable materials. This research's main objective is to clarify the ability to use two types of Portland limestone cement (Karasta and Tasluja) in self compacted concrete under impact loading, further to the economic and environmental benefits of the limestone cement. The impact loading was applied by a low-speed test, using the drop ball on concrete. Moreover, the study reveals the resistance of the grids reinforced concrete to impact loading by using polymer grid, and steel grid reinforced concrete slabs. Mixes reinforced by steel mesh had the highest results, indicating that the steel mesh was more robust because it had
... Show MoreThis study involves the design of 24 mixtures of fiber reinforced magnetic reactive powder concrete containing nano silica. Tap water was used for 12 of these mixtures, while magnetic water was used for the others. The nano silica (NS) with ratios (1, 1.5, 2, 2.5 and 3) % by weight of cement, were used for all the mixtures. The results have shown that the mixture containing 2.5% NS gives the highest compressive strength at age 7 days. Many different other tests were carried out, the results have shown that the carbon fiber reinforced magnetic reactive powder concrete containing 2.5% NS (CFRMRPCCNS) had higher compressive strength, modulus of rupture, splitting tension, str
... Show More